Wind energy is one of the most basic forms of renewable energy,which shows an increasing rate of development worldwide and also at the European level.However,this rapid deployment of wind farms makes the need for an i...Wind energy is one of the most basic forms of renewable energy,which shows an increasing rate of development worldwide and also at the European level.However,this rapid deployment of wind farms makes the need for an impact assessment of this type of projects on the natural and man-made environment imperative.The present paper aims to identify and assess the environmental impacts of wind farm projects in the Region of Central Greece.A modified Rapid Impact Assessment Matrix(RIAM)method is used for this purpose.The methodology includes the identification of the existing onshore wind farm projects in the study area,the appropriate modifications of the RIAM method to respond to the characteristics of the projects and the study area,the qualitative assessment of their potential impacts during construction and operational phases and the computation of the Environmental Performance Grade(EPG)of projects based on the pro-posed modified RIAM method.The results reveal that although there are some slight negative impacts on the natural environment of the study area,the examined wind farms contribute positively both to the atmosphere and to the socio-economic environment of the study.This study extends the potential for using RIAM as a tool in environmental impact assessment studies of renewable energy projects.展开更多
A good quality Environmental Impact Statement (EIS) is key for the effectiveness of Environmental Impact Assessment (EIA) processes and consequently to the acceptability of projects subject to EIA. The international l...A good quality Environmental Impact Statement (EIS) is key for the effectiveness of Environmental Impact Assessment (EIA) processes and consequently to the acceptability of projects subject to EIA. The international literature has contributed to the understanding of the essential aspects to be verified regarding the quality of EIS, offering a wide spectrum of good practice examples related to the content of the studies. Even so, there is a need for empirical studies that allow the identification of specific aspects related to the context of application of the EIS, which could lead to the identification of opportunities to improve both the quality of the reports and also the effectiveness of EIA. Therefore, the present paper is focused on the quality review of a number of EIS submitted to the Brazilian Federal Environmental Agency (Ibama) to instruct the assessment of electric power transmission systems. Based on the application of the EIS quality review package as proposed by Lee and Colley (1992), the outcomes reveal opportunities for improving the scope of EIA, analysis of alternatives, prediction of magnitude and the assessment of impact significance. Finally, the development and/or adaptation of a similar tool for the systematic review of the quality of EIA reports is recommended.展开更多
Follow-up of environmental impacts is an integral part of the Environmental Impact Assessment (EIA) process, closely related to the effectiveness of the instrument. EIA follow-up has been receiving a lot of interest f...Follow-up of environmental impacts is an integral part of the Environmental Impact Assessment (EIA) process, closely related to the effectiveness of the instrument. EIA follow-up has been receiving a lot of interest from scientists and practitioners, though it is recognized as one of the weakest points of EIA systems globally. Also, EIA follow-up is influenced by the context, mainly in terms of the types of projects or activities and their related impacts on the environment. Therefore, the present paper is focused on the investigation of the follow-up stage applied to the activity of seismic survey coupled with offshore oil & gas exploitation in Brazil. Research was based on a qualitative approach that included document analysis and semi-structured interviews with analysts involved in EIA processes, and sought to generate evidence of effectiveness of the EIA follow-up as conducted by the Federal Environment Agency (Ibama) in order to situate the practice of follow-up in the broader context of international best practice principles. Based on the findings, it was concluded that, due to the peculiarities of offshore seismic survey, it is necessary to promote adaptations in the procedures for monitoring impacts in order to ensure proper alignment with the principles and conceptual foundations that guide EIA practice. Specifically, the timing of the execution of the activity imposes challenges for its integration into the “conventional” cycle that has guided the monitoring of the impacts in the EIA of projects.展开更多
Parkinson’s disease is the most common movement disorder,affecting about 1%of the population over the age of 60 years.Parkinson’s disease is characterized clinically by resting tremor,bradykinesia,rigidity and postu...Parkinson’s disease is the most common movement disorder,affecting about 1%of the population over the age of 60 years.Parkinson’s disease is characterized clinically by resting tremor,bradykinesia,rigidity and postural instability,as a result of the progressive loss of nigrostriatal dopaminergic neurons.In addition to this neuronal cell loss,Parkinson’s disease is characterized by the accumulation of intracellular protein aggregates,Lewy bodies and Lewy neurites,composed primarily of the proteinα-synuclein.Although it was first described almost 200 years ago,there are no disease-modifying drugs to treat patients with Parkinson’s disease.In addition to conventional therapies,non-pharmacological treatment strategies are under investigation in patients and animal models of neurodegenerative disorders.Among such strategies,environmental enrichment,comprising physical exercise,cognitive stimulus,and social interactions,has been assessed in preclinical models of Parkinson’s disease.Environmental enrichment can cause structural and functional changes in the brain and promote neurogenesis and dendritic growth by modifying gene expression,enhancing the expression of neurotrophic factors and modulating neurotransmission.In this review article,we focus on the current knowledge about the molecular mechanisms underlying environmental enrichment neuroprotection in Parkinson’s disease,highlighting its influence on the dopaminergic,cholinergic,glutamatergic and GABAergic systems,as well as the involvement of neurotrophic factors.We describe experimental pre-clinical data showing how environmental enrichment can act as a modulator in a neurochemical and behavioral context in different animal models of Parkinson’s disease,highlighting the potential of environmental enrichment as an additional strategy in the management and prevention of this complex disease.展开更多
With the development of economy,the impact of human activities on ecological environment is increasing,and environmental protection work is important.Trace elements(Co,Ni,Cu,Pb,Zn,Cd,Cr,and Sc)in surface fi ne-grained...With the development of economy,the impact of human activities on ecological environment is increasing,and environmental protection work is important.Trace elements(Co,Ni,Cu,Pb,Zn,Cd,Cr,and Sc)in surface fi ne-grained sediment samples from the Jiaozhou Bay catchment were selected to evaluate their 2015 environmental background values and the environmental quality.Using statistical analysis,the environmental background values(ranges)of Sc,Co,Ni,Cu,Pb,Zn,Cd,and Cr were calculated,being 13.1(10.8-15.4),12.4(8.6-16.2),32.0(22.9-41.2),29.6(13.5-64.9),24.1(13.0-44.6),77.6(38.5-156.5),0.07(0.02-0.20),and 82.5(66.5-104.0)mg/kg,respectively.The enrichment factor,contamination factor,and pollution load index were used to evaluate the pollution status of the Jiaozhou Bay catchment.The environmental background values of most elements are higher than those of the upper continental crust and lower than those of global shale.At present,the pollution in the eastern Jiaozhou Bay is much higher than that in the western part.The results shall be helpful for future management for trace element pollution monitoring in the Jiaozhou Bay catchment.展开更多
The paper discusses the importance of public engagement in environmental impact assessments (EIAs) and the benefits of stakeholder involvement in project design, environmental soundness, and social acceptability. It h...The paper discusses the importance of public engagement in environmental impact assessments (EIAs) and the benefits of stakeholder involvement in project design, environmental soundness, and social acceptability. It highlights the negative repercussions of mining activities in Ghana, including health consequences such as skin conditions, fever, coughs, diarrhea, malaria, and catarrh, as well as HIV/AIDS infection among those engaged in or connected to prostitution in mining towns. The environmental effects of mining in Ghana include noise pollution from heavy trucks, contamination of water bodies with chemicals from mineral refining, pollution of agricultural soils leading to reduced food productivity, and wildlife depletion from deforestation. The activities of small-scale miners, particularly those engaged in illicit mining, have a negative impact on water quality and increase the cost of water treatment for public consumption. Mining operations have detrimental effects on the social, cultural, and natural ecosystems in Ghana, affecting the quality of life of local communities. The study takes into consideration the impact of mining activities on the environment and natural resources in Ghana, as these are vital to the livelihoods of Ghanaian communities. Stakeholders in Tarkwa claim that mining operations have distorted the natural path of the river, leading to excessive pollution and making the water unfit for consumption. Ghana’s economy depends heavily on mining, which also contributes significantly to GDP and generates jobs for a large number of people. But mining also has a lot of negative repercussions, the effects of mining extend beyond the mineralized zone initially explored, highlighting the need to consider the environmental impact at every phase of the mining process.展开更多
Objective Chlorination is often used to disinfect recreational water in large amusement parks;however,the health hazards of chlorination disinfection by-products(DBPs)to occupational populations are unknown.This study...Objective Chlorination is often used to disinfect recreational water in large amusement parks;however,the health hazards of chlorination disinfection by-products(DBPs)to occupational populations are unknown.This study aimed to assess the exposure status of chlorinated DBPs in recreational water and the health risks to employees of large amusement parks.Methods Exposure parameters of employees of three large amusement parks in Shanghai were investigated using a questionnaire.Seven typical chlorinated DBPs in recreational water and spray samples were quantified by gas chromatography,and the health risks to amusement park employees exposed to chlorinated DBPs were evaluated according to the WHO's risk assessment framework.Results Trichloroacetic acid,dibromochloromethane,bromodichloromethane,and dichloroacetic acid were detected predominantly in recreational water.The carcinogenic and non-carcinogenic risks of the five DBPs did not exceed the risk thresholds.In addition,the carcinogenic and non-carcinogenic risks of mixed exposure to DBPs were within the acceptable risk limits.Conclusion Typical DBPs were widely detected in recreational water collected from three large amusement parks in Shanghai;however,the health risks of DBPs and their mixtures were within acceptable limits.展开更多
Fluoride and nitrate enriched groundwater are potential threats to the safety of the groundwater supply that may cause significant effects on human health and public safety,especially in aggregated population areas an...Fluoride and nitrate enriched groundwater are potential threats to the safety of the groundwater supply that may cause significant effects on human health and public safety,especially in aggregated population areas and economic hubs.This study focuses on the high F^(−)and NO_(3)^(−)concentration groundwater in Tongzhou District,Beijing,North China.A total of 36 groundwater samples were collected to analyze the hydrochemical characteristics,elucidate genetic mechanisms and evaluate the potential human health risks.The results of the analysis indicate:Firstly,most of the groundwater samples are characterized by Mg-HCO_(3) and Na-HCO_(3) with the pH ranging from 7.19 to 8.28 and TDS with a large variation across the range 471-2337 mg/L.The NO_(3)^(−)concentration in 38.89%groundwater samples and the F^(−)concentration in 66.67%groundwater samples exceed the permissible limited value.Secondly,F^(−)in groundwater originates predominantly from water-rock interactions and the fluorite dissolution,which is also regulated by cation exchange,competitive adsorption of HCO_(3)−and an alkaline environment.Thirdly,the effect of sewage disposal and agricultural activities have a significant effect on high NO3-concentration,while the high F^(−)concentration is less influenced by anthropogenic activity.The alkaline environment favors nitrification,thus being conducive to the production of NO_(3)^(−).Finally,the health risk assessment is evaluated for different population groups.The results indicate that high NO_(3)^(−)and F^(−)concentration in groundwater would have the largest threat to children’s health.The findings of this study could contribute to the provision of a scientific basis for groundwater supply policy formulation relating to public health in Tongzhou District.展开更多
The microstructure and precipitated phases of as-cast Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were investigated by optical microscopy,scanning electron microscopy,energy-dispersive spectrometry and X-ray Diffract...The microstructure and precipitated phases of as-cast Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were investigated by optical microscopy,scanning electron microscopy,energy-dispersive spectrometry and X-ray Diffraction.The exposure corrosion experiment of these magnesium alloys was tested in South China Sea and KEXUE vessel atmospheric environment.The corrosion characteristic and mechanism of magnesium alloys of Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were analyzed by weight loss rate,corrosion depth,corrosion products and corrosion morphologies.The electrochemical corrosion tests were also measured in the natural seawater.The comprehensive results showed that Mg-5Y-1.5Nd-4Zn-0.5Zr magnesium alloy existed the best corrosion resistance whether in the marine atmospheric environment and natural seawater environment.That depended on the microstructure,type and distribution of precipitated phases in Mg-5Y-1.5Nd-4Zn-0.5Zr magnesium alloy.Sufficient quantity anodic precipitated phases in the microstructure of Mg-5Y-1.5Nd-4Zn-0.5Zr alloy played the key role in the corrosion resistance.展开更多
Owing to the far-reaching environmental consequences of agriculture and food systems,such as their contribution to climate change,there is an urgent need to reduce their impact.International and national governments s...Owing to the far-reaching environmental consequences of agriculture and food systems,such as their contribution to climate change,there is an urgent need to reduce their impact.International and national governments set sustainability targets and implement corresponding measures.Nevertheless,critics of the globalized system claim that a territorial administrative scale is better suited to address sustainability issues.Yet,at the subnational level,local authorities rarely apply a systemic environmental assessment to enhance their action plans.This paper employs a territorial life cycle assessment methodology to improve local environmental agri-food planning.The objective is to identify significant direct and indirect environmental hotspots,their origins,and formulate effective mitigation strategies.The methodology is applied to the administrative department of Finistere,a strategic agricultural region in North-Western France.Multiple environmental criteria including climate change,fossil resource scarcity,toxicity,and land use are modeled.The findings reveal that the primary environmental hotspots of the studied local food system arise from indirect sources,such as livestock feed or diesel consumption.Livestock reduction and organic farming conversion emerge as the most environmentally efficient strategies,resulting in a 25%decrease in the climate change indicator.However,the overall modeled impact reduction is insufficient following national objectives and remains limited for the land use indicator.These results highlight the innovative application of life cycle assessment led at a local level,offering insights for the further advancement of systematic and prospective local agri-food assessment.Additionally,they provide guidance for local authorities to enhance the sustainability of planning strategies.展开更多
Micro-energy systems contribute significantly to environmental improvement by reducing dependence on power grids through the utilization of multiple renewable energy sources.This study quantified the environmental imp...Micro-energy systems contribute significantly to environmental improvement by reducing dependence on power grids through the utilization of multiple renewable energy sources.This study quantified the environmental impact of a micro-energy network system in an industrial park through a life cycle assessment using the operation of the micro-energy network over a year as the functional unit and“cradle-to-gate”as the system boundary.Based on the baseline scenario,a natural gas generator set was added to replace central heating,and the light pipes were expanded to constitute the optimized scenario.The results showed that the key impact categories for both scenarios were global warming,fine particulate matter formation,human carcinogenic toxicity,and human non-carcinogenic toxicity.The overall environmental impact of the optimized scenario was reduced by 68%compared to the baseline scenario.A sensitivity analysis of the key factors showed that electricity from the power grid was the key impact factor in both scenarios,followed by central heating and natural gas.Therefore,to reduce the environmental impact of network systems,it is necessary to further optimize the grid power structure.The research approach can be used to optimize micro-energy networks and evaluate the environmental impact of different energy systems.展开更多
Because of environmental constraints,beef cattle was for more than a century the only viable farming option in the extensive semiarid and subhumid lands of Argentina and the main source of nutrients for humans as well...Because of environmental constraints,beef cattle was for more than a century the only viable farming option in the extensive semiarid and subhumid lands of Argentina and the main source of nutrients for humans as well.However,a growing concern and criticism have risen today about its possible negative impact on the climate and the environment.These worries tend to affect current public opinions,national policies,and international trade.Based on 40 beef cattle farms scattered across different semiarid and subhumid regions of Argentina,here we evaluated the impact of extensive cattle production on carbon,water,and nutrient pollution.Life-Cycle Assessment(LCA)and Land-Based Assessment(LBA)were the two approaches we used here to compare the environmental impact of beef production.While the environmental footprint(EF)resulting from LCA expresses the impact per unit of food,the environmental balance(EB),derived from LBA,aims at quantifying the impact per unit of land.As such,the EB considers both negative and positive impacts on the farm as an integrated system.Following standardized procedures,we evaluated EF and EB up to the farm gate,leaving aside delocalized post-farm impacts such as those of processing,packaging,and transportation that occur beyond the farm gate.In agreement with previous evidence,our results show that the EF tends to decrease as per-head production increases.Correlation coefficients and statistical significance were the following for carbon(R=−0.574;p<0.01),water(R=−0.561;p<0.01),and N(R=−0.704;p<0.01)and Phosphorus(P)pollution(R=−0.802;p<0.01)footprints.On the contrary,the EB seems to be highly sensitive,and as per-hectare beef production increases.Correlations were the following for carbon emissions(CE:R=0.955;p<0.01),water consumption(WC:R=0.822;p<0.01),nitrogen excretion(NE:R=0.948;p<0.01)and phosphorus excretion(PE:R=0.945;p<0.01).What our results suggest is that the notion of EF is useful to evaluate the environmental impact in intensive beef production systems,and the EB is suitable to assess the impact of the extensive ones.In practice,both approaches provide different perspectives on the environmental-impact problem and they should be complementary used.We concluded that the methodological rigidity of EF does not allow proper discrimination among farms in the extensive systems.On the contrary,the EB approach tended to be highly sensitive to detecting differences between individual farms and farmers,thus allowing the identification of successful options for extensive beef production in terms of public image,policy-making,and commercial opportunities.展开更多
Background,aim,and scope Environmentally persistent free radicals(EPFRs)have received significant attention due to their longer lifetime and stable existence in various environments.The strong environmental migration ...Background,aim,and scope Environmentally persistent free radicals(EPFRs)have received significant attention due to their longer lifetime and stable existence in various environments.The strong environmental migration ability of particulate matter allows EPFRs to migrate over long-distance transport,thereby impacting the quality of the local atmospheric environment.Additionally,EPFRs can also adhere to atmospheric particles and interact with typical gaseous pollutants to affect atmospheric chemical reactions.EPFRs can produce some reactive organic species,promoting oxidative stress in the human body,damaging biological macromolecules and ultimately affecting the organism health.EPFRs are considered as a novel type of pollutant that affects human health.Despite their significance,there are few literatures available on the characteristics and fate behaviors of EPFRs up to date.Therefore,supplemental reviews are crucial for providing comprehensive understanding of EPFRs.Materials and methods This review summarizes the characteristics of EPFRs in particulate matter,outlines the generation mechanism and influencing factors of EPFRs,and the impacts of EPFRs on environmental quality and organism health.Results The content of EPFRs in particulate matter ranges from 1017 to 1020 spins∙g−1.Due to the strong mobility of atmospheric particulate matter,the long-term exposure to high levels of EPFRs may aggravate the impact of particulate matter on human health.The interaction between EPFRs and typical gaseous pollutants can alter their fate and influence atmospheric chemical reactions.EPFRs are mainly produced by transition metal elements and substituted aromatic hydrocarbons through electron transfer.Additionally,the chemical bond rupture of organic substances through heat treatment or ultraviolet radiation can also produce EPFRs,and heterogeneous reactions are capable producing them as well.The production of EPFRs is not only influenced by transition metal elements and precursors,but also by various environmental factors such as oxygen,temperature,light radiation,and relative humidity.Discussion EPFRs in atmospheric particulates matters are usually rich in fine particulates with obvious seasonal and regional variations.They can easily enter the human respiratory tract and lungs with inhalable particulates,thereby increasing the risk of exposure.Additionally,EPFRs in atmospheric particulates can interact with some typical gaseous pollutants,impacting the life and fate of EPFRs in the atmosphere,and alter atmospheric chemical reactions.Traditionally,EPFRs are generated by transition metal elements and substituted aromatic hydrocarbons undergoing electron transfer in the post-flame and cool-zone regions of combustion systems and other thermal processes to remove HCl,H2O or CO groups,ultimately produce semiquinones,phenoxyls,and cyclopentadienyls.Recent studies have indicated that EPFRs can also be generated under the conditions of without transition metal elemental.Organics can also produce EPFRs through chemical bond rupture during heat treatment or light radiation conditions,as well as through some heterogeneous reactions and photochemical secondary generation of EPFRs.The presence or absence of oxygen has different effects on the type and yield of EPFRs.The concentration,type,and crystal type of transition metal elements will affect the type,content,and atmospheric lifetime of EPFRs.It is generally believed that the impact of transition metal element types on EPFRs is related to the oxidation-reduction potential.The combustion temperature or heat treatment process significantly affects the type and amount of EPFRs.Factors such as precursor loading content,pH conditions,light radiation and relative humidity also influence the generation of EPFRs.EPFRs can interact with pollutants in the environment during their migration and transformation process in environmental medium.This process accelerates the degradation of pollutants and plays a crucial role in the migration and transformation of organic pollutants in environmental media.The reaction process of EPFRs may lead to the production of reactive oxygen species(ROS)such as∙OH,which can induce oxidative stress,inflammation and immune response to biological lung cells and tissues,leading to chronic respiratory and cardiopulmonary dysfunction,cardiovascular damage and neurotoxic effects,ultimately impacting the health of organisms.Conclusions The interaction mechanism between EPFRs in particulate matter and gaseous pollutants remains unclear.Furthermore,research on the generation mechanism of EPFRs without the participation of transition metals is not comprehensive,and the detection of EPFRs is limited to simple qualitative categories and lack accurate qualitative analysis.Recommendations and perspectives Further research should be conducted on the generation mechanism,measurement techniques,migration pathways,and transformation process of EPFRs.It is also important to explore the interaction between EPFRs in atmospheric particulate matter and typical gaseous pollutants.展开更多
The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of trea...The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed.展开更多
The role of Landscape Character Assessment(LCA)at the level of territorial landscape governance spans both natural and social sciences.By analyzing the development history,research distribution,methods and application...The role of Landscape Character Assessment(LCA)at the level of territorial landscape governance spans both natural and social sciences.By analyzing the development history,research distribution,methods and applications of cutting-edge cases of LCA in China,the following conclusions are drawn:①the LCA research in China originated earlier than that in Europe,but has not yet been systematically applied to the implementation of urban and rural planning at all levels;②the fundamental theory of LCA in China has been well constructed,with three main research directions:technologyled,assessment-led,and assessment combined with other theories;③the development of LCA in rural areas is more mature than in urban areas,but the progress of research is uneven across regions;④the current research presents significant“bottom-up”academic characteristics,and there is an urgent need for government decision-making authorities and academia to jointly promote a“top-down”standardized governance mechanism to comprehensively promote the modernization of territorial landscape governance.展开更多
Great Wall Motor(GWM),a leading automotive manufacturer,places a strong emphasis on environmental sustainability and social responsibility.The company focuses on comprehensively evaluating and enhancing its supply cha...Great Wall Motor(GWM),a leading automotive manufacturer,places a strong emphasis on environmental sustainability and social responsibility.The company focuses on comprehensively evaluating and enhancing its supply chain to align with these objectives.This evaluation spans the entire product life cycle,encompassing design,manufacturing,packaging,distribution,usage,and recycling and disposal processes.Key areas of focus include optimizing raw material selection,improving product recyclability,reducing energy consumption and waste emissions,and minimizing carbon emissions during transportation.Through these endeavors,GWM not only enhances its environmental performance by reducing carbon emissions and resource consumption but also bolsters its brand image and competitiveness in the market.GWM’s dedication to environmental innovation and technological leadership serves as a driving force behind sustainable development and social responsibility within the industry.展开更多
This paper takes the assessment and evaluation of computational mechanics course as the background,and constructs a diversified course evaluation system that is student-centered and integrates both quantitative and qu...This paper takes the assessment and evaluation of computational mechanics course as the background,and constructs a diversified course evaluation system that is student-centered and integrates both quantitative and qualitative evaluation methods.The system not only pays attention to students’practical operation and theoretical knowledge mastery but also puts special emphasis on the cultivation of students’innovative abilities.In order to realize a comprehensive and objective evaluation,the assessment and evaluation method of the entropy weight model combining TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)multi-attribute decision analysis and entropy weight theory is adopted,and its validity and practicability are verified through example analysis.This method can not only comprehensively and objectively evaluate students’learning outcomes,but also provide a scientific decision-making basis for curriculum teaching reform.The implementation of this diversified course evaluation system can better reflect the comprehensive ability of students and promote the continuous improvement of teaching quality.展开更多
Objective:To explore the application effect of stratified nursing intervention based on the background of misinspiration risk assessment in mechanically ventilated patients in intensive care unit(ICU).Methods:100 case...Objective:To explore the application effect of stratified nursing intervention based on the background of misinspiration risk assessment in mechanically ventilated patients in intensive care unit(ICU).Methods:100 cases of mechanically ventilated patients who were admitted to the ICU of our hospital from March 2022 to March 2023 were selected and divided into an observation group and a control group according to the random number table method,with 50 cases in each of the two groups.The control group was given routine care in ICU,and the observation group was given stratified nursing interventions based on the background of the risk of aspiration assessment on the basis of the control group,and both groups were cared for until they were transferred out of the ICU,and the mechanical ventilation time,ICU stay time,muscle strength score,complication rate,adherence,and satisfaction were observed and compared between the two groups.Results:The mechanical ventilation time and ICU stay time of the observation group were shorter than that of the control group after the intervention;the muscle strength score,compliance and satisfaction of the observation group were higher than that of the control group after the intervention;and the complication rate of the observation group was lower than that of the control group after the intervention,all of which were P<0.05.Conclusion:The application of stratified nursing intervention based on the background of misaspiration risk assessment in ICU mechanically ventilated patients can improve the patient's muscle strength,shorten the time of mechanical ventilation,promote the patient's recovery,reduce the occurrence of complications,and improve the patient's compliance and satisfaction.展开更多
[Objective] This study aimed to investigate the adsorption and desorption characteristics of cadmium and lead in typical paddy soils of Jiangxi Province. [Method] Gleyed paddy soil and waterloggogenic paddy soil were ...[Objective] This study aimed to investigate the adsorption and desorption characteristics of cadmium and lead in typical paddy soils of Jiangxi Province. [Method] Gleyed paddy soil and waterloggogenic paddy soil were collected from Jiangxi Province and used as experimental materials to investigate single and com- petitive adsorption and desorption behaviors of cadmium and lead by batch equilib- rium method. The environmental risk of the presence of cadmium and lead in paddy soils was assessed using distribution coefficients. [Result] Under equal ratio condi- tions, the adsorption capacity of lead by two types of paddy soils was higher than that of cadmium, and the adsorption rate in waterloggogenic paddy soil was higher than that in gleyed paddy soil. The desorption capacity of cadmium by two types of paddy soils was higher than that of lead, and the desorption rate in gleyed paddy soil was higher than that in waterloggogenic paddy soil. Under competitive condi- tions, the adsorption capacity of cadmium and lead by paddy soils was significantly reduced compared with single ion system, while the desorption rate was remarkably improved. The potential environmental risk of cadmium contamination was greater than that of lead in paddy soils. Moreover, environmental risks of cadmium and lead were reduced with the increase of pH, which increased significantly under the coex- istence state. [Conclusion] In the coexistence of cadmium and lead, cadmium con- tamination should be controlled and avoided compared with lead contamination in paddy soils.展开更多
The deterioration of environmental conditions is the major contributory factor to poor health and quality of life that hinders sustainable development in any region.Coal mining is one of the major industries that cont...The deterioration of environmental conditions is the major contributory factor to poor health and quality of life that hinders sustainable development in any region.Coal mining is one of the major industries that contribute to the economy of a country but it also impacts the environment.The chemical parameters of the coal,overburden,soil and sediments along with the coal mine drainage(CMD)were investigated in order to understand the overall environmental impact from high sulphur coal mining at northeastern coalfield(India).It was found that the total sulphur content of the coal is noticeably high compared to the overburden(OB)and soil.The volatile matter of the coal is sufficiently high against the high ash content of the soil and overburden.The water samples have a High Electrical Conductivity(EC)and high Total Dissolve Solid(TDS).Lower values of pH,indicate the dissolution of minerals present in the coal as well as other minerals in the mine rejects/overburden.The chemical and nano-mineralogical composition of coal,soil and overburden samples was studied using a High Resolution-Transmission Electron Microscopy(HR-TEM),Energy Dispersive Spectroscopy(EDS),Selected-Area Diffraction(SAED),Field Emission-Scanning Electron Microscopy(FE-SEM)/EDS,X-ray diffraction(XRD),Fourier Transform Infrared Spectroscopy(FTIR),Raman and Ion-Chromatographic analysis,and Mossbauer spectroscopy.From different geochemical analysis it has been found that the mine water sample from Ledo colliery has the lowest pH value of 3.30,Tirap colliery samples have the highest electrical conductivity value of5.40 ms cm^(-1)Both Ledo and Tirap coals have total sulphur contents within the range 3-3.50%.The coal mine water from Tirap colliery(TW-15 B)has high values of Mg^(2+)(450 ppm),and Br^-(227.17 ppm).XRD analysis revealed the presence of minerals including quartz and hematite in the coals.Mineral analysis of coal mine overburden(OB)indicates the presence both of pyrite and marcasite which was also confirmed in XRD and Mossbauer spectral analysis.The presented data of the minerals and ultra/nano-particles present shows their ability to control the mobility of hazardous elements,suggesting possible use in environmental management technology,including restoration of the delicate Indian coal mine areas.展开更多
文摘Wind energy is one of the most basic forms of renewable energy,which shows an increasing rate of development worldwide and also at the European level.However,this rapid deployment of wind farms makes the need for an impact assessment of this type of projects on the natural and man-made environment imperative.The present paper aims to identify and assess the environmental impacts of wind farm projects in the Region of Central Greece.A modified Rapid Impact Assessment Matrix(RIAM)method is used for this purpose.The methodology includes the identification of the existing onshore wind farm projects in the study area,the appropriate modifications of the RIAM method to respond to the characteristics of the projects and the study area,the qualitative assessment of their potential impacts during construction and operational phases and the computation of the Environmental Performance Grade(EPG)of projects based on the pro-posed modified RIAM method.The results reveal that although there are some slight negative impacts on the natural environment of the study area,the examined wind farms contribute positively both to the atmosphere and to the socio-economic environment of the study.This study extends the potential for using RIAM as a tool in environmental impact assessment studies of renewable energy projects.
文摘A good quality Environmental Impact Statement (EIS) is key for the effectiveness of Environmental Impact Assessment (EIA) processes and consequently to the acceptability of projects subject to EIA. The international literature has contributed to the understanding of the essential aspects to be verified regarding the quality of EIS, offering a wide spectrum of good practice examples related to the content of the studies. Even so, there is a need for empirical studies that allow the identification of specific aspects related to the context of application of the EIS, which could lead to the identification of opportunities to improve both the quality of the reports and also the effectiveness of EIA. Therefore, the present paper is focused on the quality review of a number of EIS submitted to the Brazilian Federal Environmental Agency (Ibama) to instruct the assessment of electric power transmission systems. Based on the application of the EIS quality review package as proposed by Lee and Colley (1992), the outcomes reveal opportunities for improving the scope of EIA, analysis of alternatives, prediction of magnitude and the assessment of impact significance. Finally, the development and/or adaptation of a similar tool for the systematic review of the quality of EIA reports is recommended.
文摘Follow-up of environmental impacts is an integral part of the Environmental Impact Assessment (EIA) process, closely related to the effectiveness of the instrument. EIA follow-up has been receiving a lot of interest from scientists and practitioners, though it is recognized as one of the weakest points of EIA systems globally. Also, EIA follow-up is influenced by the context, mainly in terms of the types of projects or activities and their related impacts on the environment. Therefore, the present paper is focused on the investigation of the follow-up stage applied to the activity of seismic survey coupled with offshore oil & gas exploitation in Brazil. Research was based on a qualitative approach that included document analysis and semi-structured interviews with analysts involved in EIA processes, and sought to generate evidence of effectiveness of the EIA follow-up as conducted by the Federal Environment Agency (Ibama) in order to situate the practice of follow-up in the broader context of international best practice principles. Based on the findings, it was concluded that, due to the peculiarities of offshore seismic survey, it is necessary to promote adaptations in the procedures for monitoring impacts in order to ensure proper alignment with the principles and conceptual foundations that guide EIA practice. Specifically, the timing of the execution of the activity imposes challenges for its integration into the “conventional” cycle that has guided the monitoring of the impacts in the EIA of projects.
文摘Parkinson’s disease is the most common movement disorder,affecting about 1%of the population over the age of 60 years.Parkinson’s disease is characterized clinically by resting tremor,bradykinesia,rigidity and postural instability,as a result of the progressive loss of nigrostriatal dopaminergic neurons.In addition to this neuronal cell loss,Parkinson’s disease is characterized by the accumulation of intracellular protein aggregates,Lewy bodies and Lewy neurites,composed primarily of the proteinα-synuclein.Although it was first described almost 200 years ago,there are no disease-modifying drugs to treat patients with Parkinson’s disease.In addition to conventional therapies,non-pharmacological treatment strategies are under investigation in patients and animal models of neurodegenerative disorders.Among such strategies,environmental enrichment,comprising physical exercise,cognitive stimulus,and social interactions,has been assessed in preclinical models of Parkinson’s disease.Environmental enrichment can cause structural and functional changes in the brain and promote neurogenesis and dendritic growth by modifying gene expression,enhancing the expression of neurotrophic factors and modulating neurotransmission.In this review article,we focus on the current knowledge about the molecular mechanisms underlying environmental enrichment neuroprotection in Parkinson’s disease,highlighting its influence on the dopaminergic,cholinergic,glutamatergic and GABAergic systems,as well as the involvement of neurotrophic factors.We describe experimental pre-clinical data showing how environmental enrichment can act as a modulator in a neurochemical and behavioral context in different animal models of Parkinson’s disease,highlighting the potential of environmental enrichment as an additional strategy in the management and prevention of this complex disease.
基金Supported by the Shandong Provincial Natural Science Foundation of China(No.ZR2020MD061)the Construction of Public Scientifi c Research Platform for Hydrobiology and Biotechnology,a Central-Government-Led Local Science and Technology Development Foundation(No.ZY2021HN04)the Independent Project of Hainan Provincial Key Laboratory of Marine Geological Resources and Environment(Nos.ZZ[2020]2019256-01,2019256[2020]HNHSKC-01)。
文摘With the development of economy,the impact of human activities on ecological environment is increasing,and environmental protection work is important.Trace elements(Co,Ni,Cu,Pb,Zn,Cd,Cr,and Sc)in surface fi ne-grained sediment samples from the Jiaozhou Bay catchment were selected to evaluate their 2015 environmental background values and the environmental quality.Using statistical analysis,the environmental background values(ranges)of Sc,Co,Ni,Cu,Pb,Zn,Cd,and Cr were calculated,being 13.1(10.8-15.4),12.4(8.6-16.2),32.0(22.9-41.2),29.6(13.5-64.9),24.1(13.0-44.6),77.6(38.5-156.5),0.07(0.02-0.20),and 82.5(66.5-104.0)mg/kg,respectively.The enrichment factor,contamination factor,and pollution load index were used to evaluate the pollution status of the Jiaozhou Bay catchment.The environmental background values of most elements are higher than those of the upper continental crust and lower than those of global shale.At present,the pollution in the eastern Jiaozhou Bay is much higher than that in the western part.The results shall be helpful for future management for trace element pollution monitoring in the Jiaozhou Bay catchment.
文摘The paper discusses the importance of public engagement in environmental impact assessments (EIAs) and the benefits of stakeholder involvement in project design, environmental soundness, and social acceptability. It highlights the negative repercussions of mining activities in Ghana, including health consequences such as skin conditions, fever, coughs, diarrhea, malaria, and catarrh, as well as HIV/AIDS infection among those engaged in or connected to prostitution in mining towns. The environmental effects of mining in Ghana include noise pollution from heavy trucks, contamination of water bodies with chemicals from mineral refining, pollution of agricultural soils leading to reduced food productivity, and wildlife depletion from deforestation. The activities of small-scale miners, particularly those engaged in illicit mining, have a negative impact on water quality and increase the cost of water treatment for public consumption. Mining operations have detrimental effects on the social, cultural, and natural ecosystems in Ghana, affecting the quality of life of local communities. The study takes into consideration the impact of mining activities on the environment and natural resources in Ghana, as these are vital to the livelihoods of Ghanaian communities. Stakeholders in Tarkwa claim that mining operations have distorted the natural path of the river, leading to excessive pollution and making the water unfit for consumption. Ghana’s economy depends heavily on mining, which also contributes significantly to GDP and generates jobs for a large number of people. But mining also has a lot of negative repercussions, the effects of mining extend beyond the mineralized zone initially explored, highlighting the need to consider the environmental impact at every phase of the mining process.
基金funded by the Foundation of State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants(Grant No.SEPKL-EHIAEC-202210)the Foundation of Shanghai Municipal Health Commission(Grant No.202240327)the Key Discipline Project of the Three-year Action Plan for Strengthening Public Health System Construction in Shanghai(2023-2025)(Grant No.GWVI-11.1-38)。
文摘Objective Chlorination is often used to disinfect recreational water in large amusement parks;however,the health hazards of chlorination disinfection by-products(DBPs)to occupational populations are unknown.This study aimed to assess the exposure status of chlorinated DBPs in recreational water and the health risks to employees of large amusement parks.Methods Exposure parameters of employees of three large amusement parks in Shanghai were investigated using a questionnaire.Seven typical chlorinated DBPs in recreational water and spray samples were quantified by gas chromatography,and the health risks to amusement park employees exposed to chlorinated DBPs were evaluated according to the WHO's risk assessment framework.Results Trichloroacetic acid,dibromochloromethane,bromodichloromethane,and dichloroacetic acid were detected predominantly in recreational water.The carcinogenic and non-carcinogenic risks of the five DBPs did not exceed the risk thresholds.In addition,the carcinogenic and non-carcinogenic risks of mixed exposure to DBPs were within the acceptable risk limits.Conclusion Typical DBPs were widely detected in recreational water collected from three large amusement parks in Shanghai;however,the health risks of DBPs and their mixtures were within acceptable limits.
基金supported by the project of China Geological Survey(Grant No.DD20221677-2)the fundamental research funds of Chinese Academy of Geological Sciences Basal Research Fund(Grant No.JKYQN202307).
文摘Fluoride and nitrate enriched groundwater are potential threats to the safety of the groundwater supply that may cause significant effects on human health and public safety,especially in aggregated population areas and economic hubs.This study focuses on the high F^(−)and NO_(3)^(−)concentration groundwater in Tongzhou District,Beijing,North China.A total of 36 groundwater samples were collected to analyze the hydrochemical characteristics,elucidate genetic mechanisms and evaluate the potential human health risks.The results of the analysis indicate:Firstly,most of the groundwater samples are characterized by Mg-HCO_(3) and Na-HCO_(3) with the pH ranging from 7.19 to 8.28 and TDS with a large variation across the range 471-2337 mg/L.The NO_(3)^(−)concentration in 38.89%groundwater samples and the F^(−)concentration in 66.67%groundwater samples exceed the permissible limited value.Secondly,F^(−)in groundwater originates predominantly from water-rock interactions and the fluorite dissolution,which is also regulated by cation exchange,competitive adsorption of HCO_(3)−and an alkaline environment.Thirdly,the effect of sewage disposal and agricultural activities have a significant effect on high NO3-concentration,while the high F^(−)concentration is less influenced by anthropogenic activity.The alkaline environment favors nitrification,thus being conducive to the production of NO_(3)^(−).Finally,the health risk assessment is evaluated for different population groups.The results indicate that high NO_(3)^(−)and F^(−)concentration in groundwater would have the largest threat to children’s health.The findings of this study could contribute to the provision of a scientific basis for groundwater supply policy formulation relating to public health in Tongzhou District.
基金National Natural Science Foundation of China for Exploring Key Scientific Instrument(No.41827805)the Open Funds of the State Key Laboratory of Rare Earth Resource Utilization(No.RERU2021017)Hainan Province Science and Technology Special Fund(ZDYF2021GXJS210)for providing support。
文摘The microstructure and precipitated phases of as-cast Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were investigated by optical microscopy,scanning electron microscopy,energy-dispersive spectrometry and X-ray Diffraction.The exposure corrosion experiment of these magnesium alloys was tested in South China Sea and KEXUE vessel atmospheric environment.The corrosion characteristic and mechanism of magnesium alloys of Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were analyzed by weight loss rate,corrosion depth,corrosion products and corrosion morphologies.The electrochemical corrosion tests were also measured in the natural seawater.The comprehensive results showed that Mg-5Y-1.5Nd-4Zn-0.5Zr magnesium alloy existed the best corrosion resistance whether in the marine atmospheric environment and natural seawater environment.That depended on the microstructure,type and distribution of precipitated phases in Mg-5Y-1.5Nd-4Zn-0.5Zr magnesium alloy.Sufficient quantity anodic precipitated phases in the microstructure of Mg-5Y-1.5Nd-4Zn-0.5Zr alloy played the key role in the corrosion resistance.
文摘Owing to the far-reaching environmental consequences of agriculture and food systems,such as their contribution to climate change,there is an urgent need to reduce their impact.International and national governments set sustainability targets and implement corresponding measures.Nevertheless,critics of the globalized system claim that a territorial administrative scale is better suited to address sustainability issues.Yet,at the subnational level,local authorities rarely apply a systemic environmental assessment to enhance their action plans.This paper employs a territorial life cycle assessment methodology to improve local environmental agri-food planning.The objective is to identify significant direct and indirect environmental hotspots,their origins,and formulate effective mitigation strategies.The methodology is applied to the administrative department of Finistere,a strategic agricultural region in North-Western France.Multiple environmental criteria including climate change,fossil resource scarcity,toxicity,and land use are modeled.The findings reveal that the primary environmental hotspots of the studied local food system arise from indirect sources,such as livestock feed or diesel consumption.Livestock reduction and organic farming conversion emerge as the most environmentally efficient strategies,resulting in a 25%decrease in the climate change indicator.However,the overall modeled impact reduction is insufficient following national objectives and remains limited for the land use indicator.These results highlight the innovative application of life cycle assessment led at a local level,offering insights for the further advancement of systematic and prospective local agri-food assessment.Additionally,they provide guidance for local authorities to enhance the sustainability of planning strategies.
基金funded by the National Key R&D Project[Grant No.2019YFC1903900]Key R&D Province[Grant No.2023SFGC0101]Taishan Scholar Project[Grant No.tsqn202103010].
文摘Micro-energy systems contribute significantly to environmental improvement by reducing dependence on power grids through the utilization of multiple renewable energy sources.This study quantified the environmental impact of a micro-energy network system in an industrial park through a life cycle assessment using the operation of the micro-energy network over a year as the functional unit and“cradle-to-gate”as the system boundary.Based on the baseline scenario,a natural gas generator set was added to replace central heating,and the light pipes were expanded to constitute the optimized scenario.The results showed that the key impact categories for both scenarios were global warming,fine particulate matter formation,human carcinogenic toxicity,and human non-carcinogenic toxicity.The overall environmental impact of the optimized scenario was reduced by 68%compared to the baseline scenario.A sensitivity analysis of the key factors showed that electricity from the power grid was the key impact factor in both scenarios,followed by central heating and natural gas.Therefore,to reduce the environmental impact of network systems,it is necessary to further optimize the grid power structure.The research approach can be used to optimize micro-energy networks and evaluate the environmental impact of different energy systems.
文摘Because of environmental constraints,beef cattle was for more than a century the only viable farming option in the extensive semiarid and subhumid lands of Argentina and the main source of nutrients for humans as well.However,a growing concern and criticism have risen today about its possible negative impact on the climate and the environment.These worries tend to affect current public opinions,national policies,and international trade.Based on 40 beef cattle farms scattered across different semiarid and subhumid regions of Argentina,here we evaluated the impact of extensive cattle production on carbon,water,and nutrient pollution.Life-Cycle Assessment(LCA)and Land-Based Assessment(LBA)were the two approaches we used here to compare the environmental impact of beef production.While the environmental footprint(EF)resulting from LCA expresses the impact per unit of food,the environmental balance(EB),derived from LBA,aims at quantifying the impact per unit of land.As such,the EB considers both negative and positive impacts on the farm as an integrated system.Following standardized procedures,we evaluated EF and EB up to the farm gate,leaving aside delocalized post-farm impacts such as those of processing,packaging,and transportation that occur beyond the farm gate.In agreement with previous evidence,our results show that the EF tends to decrease as per-head production increases.Correlation coefficients and statistical significance were the following for carbon(R=−0.574;p<0.01),water(R=−0.561;p<0.01),and N(R=−0.704;p<0.01)and Phosphorus(P)pollution(R=−0.802;p<0.01)footprints.On the contrary,the EB seems to be highly sensitive,and as per-hectare beef production increases.Correlations were the following for carbon emissions(CE:R=0.955;p<0.01),water consumption(WC:R=0.822;p<0.01),nitrogen excretion(NE:R=0.948;p<0.01)and phosphorus excretion(PE:R=0.945;p<0.01).What our results suggest is that the notion of EF is useful to evaluate the environmental impact in intensive beef production systems,and the EB is suitable to assess the impact of the extensive ones.In practice,both approaches provide different perspectives on the environmental-impact problem and they should be complementary used.We concluded that the methodological rigidity of EF does not allow proper discrimination among farms in the extensive systems.On the contrary,the EB approach tended to be highly sensitive to detecting differences between individual farms and farmers,thus allowing the identification of successful options for extensive beef production in terms of public image,policy-making,and commercial opportunities.
文摘Background,aim,and scope Environmentally persistent free radicals(EPFRs)have received significant attention due to their longer lifetime and stable existence in various environments.The strong environmental migration ability of particulate matter allows EPFRs to migrate over long-distance transport,thereby impacting the quality of the local atmospheric environment.Additionally,EPFRs can also adhere to atmospheric particles and interact with typical gaseous pollutants to affect atmospheric chemical reactions.EPFRs can produce some reactive organic species,promoting oxidative stress in the human body,damaging biological macromolecules and ultimately affecting the organism health.EPFRs are considered as a novel type of pollutant that affects human health.Despite their significance,there are few literatures available on the characteristics and fate behaviors of EPFRs up to date.Therefore,supplemental reviews are crucial for providing comprehensive understanding of EPFRs.Materials and methods This review summarizes the characteristics of EPFRs in particulate matter,outlines the generation mechanism and influencing factors of EPFRs,and the impacts of EPFRs on environmental quality and organism health.Results The content of EPFRs in particulate matter ranges from 1017 to 1020 spins∙g−1.Due to the strong mobility of atmospheric particulate matter,the long-term exposure to high levels of EPFRs may aggravate the impact of particulate matter on human health.The interaction between EPFRs and typical gaseous pollutants can alter their fate and influence atmospheric chemical reactions.EPFRs are mainly produced by transition metal elements and substituted aromatic hydrocarbons through electron transfer.Additionally,the chemical bond rupture of organic substances through heat treatment or ultraviolet radiation can also produce EPFRs,and heterogeneous reactions are capable producing them as well.The production of EPFRs is not only influenced by transition metal elements and precursors,but also by various environmental factors such as oxygen,temperature,light radiation,and relative humidity.Discussion EPFRs in atmospheric particulates matters are usually rich in fine particulates with obvious seasonal and regional variations.They can easily enter the human respiratory tract and lungs with inhalable particulates,thereby increasing the risk of exposure.Additionally,EPFRs in atmospheric particulates can interact with some typical gaseous pollutants,impacting the life and fate of EPFRs in the atmosphere,and alter atmospheric chemical reactions.Traditionally,EPFRs are generated by transition metal elements and substituted aromatic hydrocarbons undergoing electron transfer in the post-flame and cool-zone regions of combustion systems and other thermal processes to remove HCl,H2O or CO groups,ultimately produce semiquinones,phenoxyls,and cyclopentadienyls.Recent studies have indicated that EPFRs can also be generated under the conditions of without transition metal elemental.Organics can also produce EPFRs through chemical bond rupture during heat treatment or light radiation conditions,as well as through some heterogeneous reactions and photochemical secondary generation of EPFRs.The presence or absence of oxygen has different effects on the type and yield of EPFRs.The concentration,type,and crystal type of transition metal elements will affect the type,content,and atmospheric lifetime of EPFRs.It is generally believed that the impact of transition metal element types on EPFRs is related to the oxidation-reduction potential.The combustion temperature or heat treatment process significantly affects the type and amount of EPFRs.Factors such as precursor loading content,pH conditions,light radiation and relative humidity also influence the generation of EPFRs.EPFRs can interact with pollutants in the environment during their migration and transformation process in environmental medium.This process accelerates the degradation of pollutants and plays a crucial role in the migration and transformation of organic pollutants in environmental media.The reaction process of EPFRs may lead to the production of reactive oxygen species(ROS)such as∙OH,which can induce oxidative stress,inflammation and immune response to biological lung cells and tissues,leading to chronic respiratory and cardiopulmonary dysfunction,cardiovascular damage and neurotoxic effects,ultimately impacting the health of organisms.Conclusions The interaction mechanism between EPFRs in particulate matter and gaseous pollutants remains unclear.Furthermore,research on the generation mechanism of EPFRs without the participation of transition metals is not comprehensive,and the detection of EPFRs is limited to simple qualitative categories and lack accurate qualitative analysis.Recommendations and perspectives Further research should be conducted on the generation mechanism,measurement techniques,migration pathways,and transformation process of EPFRs.It is also important to explore the interaction between EPFRs in atmospheric particulate matter and typical gaseous pollutants.
文摘The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed.
基金Sponsored by General Project of Natural Science Foundation of Beijing City(8202017)Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX23_1257).
文摘The role of Landscape Character Assessment(LCA)at the level of territorial landscape governance spans both natural and social sciences.By analyzing the development history,research distribution,methods and applications of cutting-edge cases of LCA in China,the following conclusions are drawn:①the LCA research in China originated earlier than that in Europe,but has not yet been systematically applied to the implementation of urban and rural planning at all levels;②the fundamental theory of LCA in China has been well constructed,with three main research directions:technologyled,assessment-led,and assessment combined with other theories;③the development of LCA in rural areas is more mature than in urban areas,but the progress of research is uneven across regions;④the current research presents significant“bottom-up”academic characteristics,and there is an urgent need for government decision-making authorities and academia to jointly promote a“top-down”standardized governance mechanism to comprehensively promote the modernization of territorial landscape governance.
文摘Great Wall Motor(GWM),a leading automotive manufacturer,places a strong emphasis on environmental sustainability and social responsibility.The company focuses on comprehensively evaluating and enhancing its supply chain to align with these objectives.This evaluation spans the entire product life cycle,encompassing design,manufacturing,packaging,distribution,usage,and recycling and disposal processes.Key areas of focus include optimizing raw material selection,improving product recyclability,reducing energy consumption and waste emissions,and minimizing carbon emissions during transportation.Through these endeavors,GWM not only enhances its environmental performance by reducing carbon emissions and resource consumption but also bolsters its brand image and competitiveness in the market.GWM’s dedication to environmental innovation and technological leadership serves as a driving force behind sustainable development and social responsibility within the industry.
基金2024 Key Project of Teaching Reform Research and Practice in Higher Education in Henan Province“Exploration and Practice of Training Model for Outstanding Students in Basic Mechanics Discipline”(2024SJGLX094)Henan Province“Mechanics+X”Basic Discipline Outstanding Student Training Base2024 Research and Practice Project of Higher Education Teaching Reform in Henan University of Science and Technology“Optimization and Practice of Ability-Oriented Teaching Mode for Computational Mechanics Course:A New Exploration in Cultivating Practical Simulation Engineers”(2024BK074)。
文摘This paper takes the assessment and evaluation of computational mechanics course as the background,and constructs a diversified course evaluation system that is student-centered and integrates both quantitative and qualitative evaluation methods.The system not only pays attention to students’practical operation and theoretical knowledge mastery but also puts special emphasis on the cultivation of students’innovative abilities.In order to realize a comprehensive and objective evaluation,the assessment and evaluation method of the entropy weight model combining TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)multi-attribute decision analysis and entropy weight theory is adopted,and its validity and practicability are verified through example analysis.This method can not only comprehensively and objectively evaluate students’learning outcomes,but also provide a scientific decision-making basis for curriculum teaching reform.The implementation of this diversified course evaluation system can better reflect the comprehensive ability of students and promote the continuous improvement of teaching quality.
文摘Objective:To explore the application effect of stratified nursing intervention based on the background of misinspiration risk assessment in mechanically ventilated patients in intensive care unit(ICU).Methods:100 cases of mechanically ventilated patients who were admitted to the ICU of our hospital from March 2022 to March 2023 were selected and divided into an observation group and a control group according to the random number table method,with 50 cases in each of the two groups.The control group was given routine care in ICU,and the observation group was given stratified nursing interventions based on the background of the risk of aspiration assessment on the basis of the control group,and both groups were cared for until they were transferred out of the ICU,and the mechanical ventilation time,ICU stay time,muscle strength score,complication rate,adherence,and satisfaction were observed and compared between the two groups.Results:The mechanical ventilation time and ICU stay time of the observation group were shorter than that of the control group after the intervention;the muscle strength score,compliance and satisfaction of the observation group were higher than that of the control group after the intervention;and the complication rate of the observation group was lower than that of the control group after the intervention,all of which were P<0.05.Conclusion:The application of stratified nursing intervention based on the background of misaspiration risk assessment in ICU mechanically ventilated patients can improve the patient's muscle strength,shorten the time of mechanical ventilation,promote the patient's recovery,reduce the occurrence of complications,and improve the patient's compliance and satisfaction.
基金Supported by Science and Technology Research Project of Jiangxi Education Department(GJJ14289)Science and Technology Research Project of Environmental Protection Department of Jiangxi Province(JXHBKJ2013-4)Special Fund for Visiting Scholars from the Development Program for Middle-aged and Young Teachers in Colleges of Jiangxi Province(GJGH[2014]N0.15)
文摘[Objective] This study aimed to investigate the adsorption and desorption characteristics of cadmium and lead in typical paddy soils of Jiangxi Province. [Method] Gleyed paddy soil and waterloggogenic paddy soil were collected from Jiangxi Province and used as experimental materials to investigate single and com- petitive adsorption and desorption behaviors of cadmium and lead by batch equilib- rium method. The environmental risk of the presence of cadmium and lead in paddy soils was assessed using distribution coefficients. [Result] Under equal ratio condi- tions, the adsorption capacity of lead by two types of paddy soils was higher than that of cadmium, and the adsorption rate in waterloggogenic paddy soil was higher than that in gleyed paddy soil. The desorption capacity of cadmium by two types of paddy soils was higher than that of lead, and the desorption rate in gleyed paddy soil was higher than that in waterloggogenic paddy soil. Under competitive condi- tions, the adsorption capacity of cadmium and lead by paddy soils was significantly reduced compared with single ion system, while the desorption rate was remarkably improved. The potential environmental risk of cadmium contamination was greater than that of lead in paddy soils. Moreover, environmental risks of cadmium and lead were reduced with the increase of pH, which increased significantly under the coex- istence state. [Conclusion] In the coexistence of cadmium and lead, cadmium con- tamination should be controlled and avoided compared with lead contamination in paddy soils.
基金The financial assistance from CSIR,New Delhi(MLP6000-WP-Ⅲ)
文摘The deterioration of environmental conditions is the major contributory factor to poor health and quality of life that hinders sustainable development in any region.Coal mining is one of the major industries that contribute to the economy of a country but it also impacts the environment.The chemical parameters of the coal,overburden,soil and sediments along with the coal mine drainage(CMD)were investigated in order to understand the overall environmental impact from high sulphur coal mining at northeastern coalfield(India).It was found that the total sulphur content of the coal is noticeably high compared to the overburden(OB)and soil.The volatile matter of the coal is sufficiently high against the high ash content of the soil and overburden.The water samples have a High Electrical Conductivity(EC)and high Total Dissolve Solid(TDS).Lower values of pH,indicate the dissolution of minerals present in the coal as well as other minerals in the mine rejects/overburden.The chemical and nano-mineralogical composition of coal,soil and overburden samples was studied using a High Resolution-Transmission Electron Microscopy(HR-TEM),Energy Dispersive Spectroscopy(EDS),Selected-Area Diffraction(SAED),Field Emission-Scanning Electron Microscopy(FE-SEM)/EDS,X-ray diffraction(XRD),Fourier Transform Infrared Spectroscopy(FTIR),Raman and Ion-Chromatographic analysis,and Mossbauer spectroscopy.From different geochemical analysis it has been found that the mine water sample from Ledo colliery has the lowest pH value of 3.30,Tirap colliery samples have the highest electrical conductivity value of5.40 ms cm^(-1)Both Ledo and Tirap coals have total sulphur contents within the range 3-3.50%.The coal mine water from Tirap colliery(TW-15 B)has high values of Mg^(2+)(450 ppm),and Br^-(227.17 ppm).XRD analysis revealed the presence of minerals including quartz and hematite in the coals.Mineral analysis of coal mine overburden(OB)indicates the presence both of pyrite and marcasite which was also confirmed in XRD and Mossbauer spectral analysis.The presented data of the minerals and ultra/nano-particles present shows their ability to control the mobility of hazardous elements,suggesting possible use in environmental management technology,including restoration of the delicate Indian coal mine areas.