Massive gas emissions(e.g.,CO_(2),CH_(4) and SO_(2))during the formation of large igneous provinces(LIPs)have been suggested as the primary cause of dramatic climatic change and the consequent ecological collapses and...Massive gas emissions(e.g.,CO_(2),CH_(4) and SO_(2))during the formation of large igneous provinces(LIPs)have been suggested as the primary cause of dramatic climatic change and the consequent ecological collapses and biotic crises.Thermogenic carbon of crustal sediments induced by intrusive magmatism throughout the LIPs is considered as the primary trigger for environmental catastrophe including mass extinction,as illustrated in the case of the Emeishan LIP in Southwest China.Herewe evaluate the Emeishan LIP to address the causal link between carbon degassing and environmental crises during the end-Guadalupian of Middle Permian.An assessment of the carbon flux degassed from recycled oceanic crust in the Emeishan plume shows that recycled oceanic crust contributed significantly to the carbon flux.Using evidence fromcarbonate carbon isotopic records at the Gualupian-Lopingian(G-L)boundary stratotype at Penglaitan of South China,our study suggests that carbon degassed from massive recycled components in the Emeishan plume served as a major end-Guadalupian(Middle Permian)carbon isotope excursion.The model based on the Emeishan LIP also offers new insights into the important role of recycled carbon released from other LIPs in climatic change and mass extinctions,as in the cases of the end-Permian Siberian and end-Cretaceous Deccan Traps.Our work highlights that carbon released from subducted slabs is returned to the atmosphere via upwelling mantle plumes,which could drive global climatic change and mass extinction.展开更多
Engineering construction has major influence on the permafrost environment.This paper analyzes the interaction between engineering construction and permafrost environment along the Chaidaer-Muli Railway(simply,CMR) ba...Engineering construction has major influence on the permafrost environment.This paper analyzes the interaction between engineering construction and permafrost environment along the Chaidaer-Muli Railway(simply,CMR) based on the press-state-response(PSR) framework.The permafrost environmental system is divided into three subsystems,consisting of permafrost thermal stability,proneness to the freeze-thawing erosion and permafrost ecological fragility.Each subsystem considers its most important influencing factors.Catastrophe Progression Method(CPM) is applied to calculate the current environment condition along the railway.The result indicates that:(1) as far as the thermal stability is concerned,most sections along the CMR are mainly concentrated in rank Ⅲ(fair situation),and a few in Ⅱ(good situation) and Ⅳ(bad situation),respectively;(2) for the proneness tothe freeze-thawing erosion,the entire railway route falls largely in rank Ⅱ(good situation);(3) along the CMR,the ecological fragility of the permafrost environment is in rank Ⅱ(good situation),or slightly fragile;(4) overall,the permafrost environments along the CMR are in rank Ⅲ(fair situation) or Ⅱcondition(good situation).In general,the permafrost environment along the CMR is fair.It is mainly because a series of active measures of protecting permafrost were taken for stabilizing the CMR foundation soils.On the one hand,we should try our best to minimize the influences that engineering activities have exerted on ecology and environment,on the other hand,the positive measures have made improvements to prevent the permafrost environment from deterioration.展开更多
Chronic petroleum discharges resulting from underground storage tank (UST) system failures may continue for months or years, whereas catastrophic releases result from structural failures or overfills that occur over s...Chronic petroleum discharges resulting from underground storage tank (UST) system failures may continue for months or years, whereas catastrophic releases result from structural failures or overfills that occur over shorter time periods. A forensic analytical framework is useful for distinguishing between chronic and catastrophic releases and identifying responsible parties. However, the forensic program must account for the petroleum type because identifying release modes relies on understanding the chemical evolution of petroleum through time within the context of site conditions. Here we discuss key petroleum components that aid in reconstructing the release and identifying potential responsible parties when subsurface conditions are known.展开更多
基金by the National Key Research and Development Program of China(2016YFC0600502)the National Natural Science Foundation of China(41761134086,42002062)+2 种基金111 Project(B18048)China Postdoctoral Science Foundation(2020 M673309)Postdoctoral Science Foundation of Yunnan Province(W8163007)。
文摘Massive gas emissions(e.g.,CO_(2),CH_(4) and SO_(2))during the formation of large igneous provinces(LIPs)have been suggested as the primary cause of dramatic climatic change and the consequent ecological collapses and biotic crises.Thermogenic carbon of crustal sediments induced by intrusive magmatism throughout the LIPs is considered as the primary trigger for environmental catastrophe including mass extinction,as illustrated in the case of the Emeishan LIP in Southwest China.Herewe evaluate the Emeishan LIP to address the causal link between carbon degassing and environmental crises during the end-Guadalupian of Middle Permian.An assessment of the carbon flux degassed from recycled oceanic crust in the Emeishan plume shows that recycled oceanic crust contributed significantly to the carbon flux.Using evidence fromcarbonate carbon isotopic records at the Gualupian-Lopingian(G-L)boundary stratotype at Penglaitan of South China,our study suggests that carbon degassed from massive recycled components in the Emeishan plume served as a major end-Guadalupian(Middle Permian)carbon isotope excursion.The model based on the Emeishan LIP also offers new insights into the important role of recycled carbon released from other LIPs in climatic change and mass extinctions,as in the cases of the end-Permian Siberian and end-Cretaceous Deccan Traps.Our work highlights that carbon released from subducted slabs is returned to the atmosphere via upwelling mantle plumes,which could drive global climatic change and mass extinction.
基金supported by the Major State Basic Research Development Program of China (No.2013CBA01803)the National Natural Science Foundation of China (No.41271084 and 41501079)+1 种基金the Project Funded by China Postdoctoral Science Foundation (No.2015M582724 and 2016T90962)the Chinese Academy of Sciences (CAS) Key Research Program (No.KZZD-EW-13)
文摘Engineering construction has major influence on the permafrost environment.This paper analyzes the interaction between engineering construction and permafrost environment along the Chaidaer-Muli Railway(simply,CMR) based on the press-state-response(PSR) framework.The permafrost environmental system is divided into three subsystems,consisting of permafrost thermal stability,proneness to the freeze-thawing erosion and permafrost ecological fragility.Each subsystem considers its most important influencing factors.Catastrophe Progression Method(CPM) is applied to calculate the current environment condition along the railway.The result indicates that:(1) as far as the thermal stability is concerned,most sections along the CMR are mainly concentrated in rank Ⅲ(fair situation),and a few in Ⅱ(good situation) and Ⅳ(bad situation),respectively;(2) for the proneness tothe freeze-thawing erosion,the entire railway route falls largely in rank Ⅱ(good situation);(3) along the CMR,the ecological fragility of the permafrost environment is in rank Ⅱ(good situation),or slightly fragile;(4) overall,the permafrost environments along the CMR are in rank Ⅲ(fair situation) or Ⅱcondition(good situation).In general,the permafrost environment along the CMR is fair.It is mainly because a series of active measures of protecting permafrost were taken for stabilizing the CMR foundation soils.On the one hand,we should try our best to minimize the influences that engineering activities have exerted on ecology and environment,on the other hand,the positive measures have made improvements to prevent the permafrost environment from deterioration.
文摘Chronic petroleum discharges resulting from underground storage tank (UST) system failures may continue for months or years, whereas catastrophic releases result from structural failures or overfills that occur over shorter time periods. A forensic analytical framework is useful for distinguishing between chronic and catastrophic releases and identifying responsible parties. However, the forensic program must account for the petroleum type because identifying release modes relies on understanding the chemical evolution of petroleum through time within the context of site conditions. Here we discuss key petroleum components that aid in reconstructing the release and identifying potential responsible parties when subsurface conditions are known.