Phosphorus (P) applied from fertilizer and manure is important in increasing crop yield and soil fertility; however, excessive uses of phosphate fertilizer and manure may also increase P loss from agricultural soils...Phosphorus (P) applied from fertilizer and manure is important in increasing crop yield and soil fertility; however, excessive uses of phosphate fertilizer and manure may also increase P loss from agricultural soils, posing environmental impact. A long term experiment was conducted on a calcareous soil (meadow cinnamon) in Hebei Province, China, from 2003 to 2006 to investigate the effects of phosphate fertilizer and manure on the yield of Chinese cabbage, soil P accumulation, P sorption saturation, soluble P in runoff water, and P leaching. P fertilizer (P2O5) application at a rate of 360 kg ha^-1 or manure of 150 t ha^-1 significantly increased Chinese cabbage yield as compared to the unfertilized control. However, no significant yield response was found with excessive phosphate or manure application. Soil Olsen-P, soluble P, bioavailable P, the degree of phosphorus sorption saturation in top soil layer (0-20 cm), and soluble P in runoff water increased significantly with the increase of phosphate fertilizer and manure application rates, whereas the maximum phosphorus sorption capacity (Qm) decreased with the phosphate fertilizer and manure application rates. Soil Olsen-P and soluble P also increased significantly in the sub soil layer (20-40 cm) with the high P fertilizer and manure rates. It indicates that excessive P application over crop demand can lead to a high environmental risk owing to the enrichment of soil Olsen-P, soluble P, bioavailable P, and the degree of phosphorus sorption saturation in agricultural soils.展开更多
Soil magnetic characteristics are correlated with soil p H and organic matter content. Analyzing soil magnetic characteristics, organic matter content and p H can indirectly evaluate soil pollution caused by human act...Soil magnetic characteristics are correlated with soil p H and organic matter content. Analyzing soil magnetic characteristics, organic matter content and p H can indirectly evaluate soil pollution caused by human activities. This study analyzed the soil magnetic characteristics, organic matter content and p H in surface soil samples from different land use types in Shihezi city, a newly and rapidly developing oasis city in Xinjiang of China. The aims of this study were to explore the possible relationships among the soil magnetic parameters and thereby improve the understanding of influence of urbanization on soil properties. Eighty surface soil samples at the depth of 0–10 cm were collected from 29 July to 4 August 2013. The results showed that the magnetic minerals in surface soil were dominated by ferromagnetic minerals. Spatially, the magnetic susceptibility(χLF), anhysteretic remanent magnetization susceptibility(χARM), saturation isothermal remanent magnetization(SIRM) and "soft" isothermal remanent magnetization(SOFT) were found to be most dominant in the new northern urban area B(N-B), followed by built-up areas(U), suburban agricultural land(F), and then the new northern urban area A(N-A). The values of χLF, χARM, SIRM and SOFT were higher in the areas with high intensities of human activities and around the main roads. Meanwhile, the property "hard" isothermal remanent magnetization(HIRM) followed the order of U〉N-B〉F〉N-A. Built-up areas had an average p H value of 7.93, which was much higher than that in the new northern urban areas as well as in suburban agricultural land, due to the increased urban pollutant emissions. The average value of soil organic matter content in the whole study area was 34.69 g/kg, and the values in the new northern urban areas were much higher than those in the suburban agricultural land and built-up areas. For suburban agricultural land, soil organic matter content was significantly negatively correlated with χLF, and had no correlation with other magnetic parameters, since the soil was frequently ploughed. In the new northern urban areas(N-A and N-B), there were significant positive correlations of soil organic matter contents with χARM, SIRM, SOFT and HIRM, because natural grasslands were not frequently turned over. For the built-up areas, soil organic matter contents were significantly positively correlated with χLF, χARM, SIRM and SOFT, but not significantly correlated with frequency-dependent susceptibility(χFD, expressed as a percentage) and HIRM, because the soil was not frequently turned over or influenced by human activities. The results showed that soil magnetic characteristics are related to the soil turnover time.展开更多
High effect flocculant compound bacteria were screened out with the product bacteria of flocculant in soil. Their system appraising study shows that two were actionomyces and the other was microzyme among the three ba...High effect flocculant compound bacteria were screened out with the product bacteria of flocculant in soil. Their system appraising study shows that two were actionomyces and the other was microzyme among the three bacteria. According to nSrDNA, the three bacteria were marked at a molecule level and the system growth tree was established, ensuring the position of compound bacteria at the molecule level. The purificant which was made of the compound bacteria has spreading value because of its excellent clearing effect for organic and inorganic polluted water.展开更多
基金The study was supported by the 948 Program of theMinistry of Agriculture of China (2003-253) the Natural Science Foundation of Hebei Province,China (300130).
文摘Phosphorus (P) applied from fertilizer and manure is important in increasing crop yield and soil fertility; however, excessive uses of phosphate fertilizer and manure may also increase P loss from agricultural soils, posing environmental impact. A long term experiment was conducted on a calcareous soil (meadow cinnamon) in Hebei Province, China, from 2003 to 2006 to investigate the effects of phosphate fertilizer and manure on the yield of Chinese cabbage, soil P accumulation, P sorption saturation, soluble P in runoff water, and P leaching. P fertilizer (P2O5) application at a rate of 360 kg ha^-1 or manure of 150 t ha^-1 significantly increased Chinese cabbage yield as compared to the unfertilized control. However, no significant yield response was found with excessive phosphate or manure application. Soil Olsen-P, soluble P, bioavailable P, the degree of phosphorus sorption saturation in top soil layer (0-20 cm), and soluble P in runoff water increased significantly with the increase of phosphate fertilizer and manure application rates, whereas the maximum phosphorus sorption capacity (Qm) decreased with the phosphate fertilizer and manure application rates. Soil Olsen-P and soluble P also increased significantly in the sub soil layer (20-40 cm) with the high P fertilizer and manure rates. It indicates that excessive P application over crop demand can lead to a high environmental risk owing to the enrichment of soil Olsen-P, soluble P, bioavailable P, and the degree of phosphorus sorption saturation in agricultural soils.
基金funded by the National Natural Science Foundation of China (41171165, 41161029)the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (IDHT20130322)the Talent Strong School Plan of Funded Project of Beijing Union University (BPHR2012E01)
文摘Soil magnetic characteristics are correlated with soil p H and organic matter content. Analyzing soil magnetic characteristics, organic matter content and p H can indirectly evaluate soil pollution caused by human activities. This study analyzed the soil magnetic characteristics, organic matter content and p H in surface soil samples from different land use types in Shihezi city, a newly and rapidly developing oasis city in Xinjiang of China. The aims of this study were to explore the possible relationships among the soil magnetic parameters and thereby improve the understanding of influence of urbanization on soil properties. Eighty surface soil samples at the depth of 0–10 cm were collected from 29 July to 4 August 2013. The results showed that the magnetic minerals in surface soil were dominated by ferromagnetic minerals. Spatially, the magnetic susceptibility(χLF), anhysteretic remanent magnetization susceptibility(χARM), saturation isothermal remanent magnetization(SIRM) and "soft" isothermal remanent magnetization(SOFT) were found to be most dominant in the new northern urban area B(N-B), followed by built-up areas(U), suburban agricultural land(F), and then the new northern urban area A(N-A). The values of χLF, χARM, SIRM and SOFT were higher in the areas with high intensities of human activities and around the main roads. Meanwhile, the property "hard" isothermal remanent magnetization(HIRM) followed the order of U〉N-B〉F〉N-A. Built-up areas had an average p H value of 7.93, which was much higher than that in the new northern urban areas as well as in suburban agricultural land, due to the increased urban pollutant emissions. The average value of soil organic matter content in the whole study area was 34.69 g/kg, and the values in the new northern urban areas were much higher than those in the suburban agricultural land and built-up areas. For suburban agricultural land, soil organic matter content was significantly negatively correlated with χLF, and had no correlation with other magnetic parameters, since the soil was frequently ploughed. In the new northern urban areas(N-A and N-B), there were significant positive correlations of soil organic matter contents with χARM, SIRM, SOFT and HIRM, because natural grasslands were not frequently turned over. For the built-up areas, soil organic matter contents were significantly positively correlated with χLF, χARM, SIRM and SOFT, but not significantly correlated with frequency-dependent susceptibility(χFD, expressed as a percentage) and HIRM, because the soil was not frequently turned over or influenced by human activities. The results showed that soil magnetic characteristics are related to the soil turnover time.
基金the "973" Project of China ( No 2004CB418505) Innovation Foundation of Jilin University ( No419070200045)
文摘High effect flocculant compound bacteria were screened out with the product bacteria of flocculant in soil. Their system appraising study shows that two were actionomyces and the other was microzyme among the three bacteria. According to nSrDNA, the three bacteria were marked at a molecule level and the system growth tree was established, ensuring the position of compound bacteria at the molecule level. The purificant which was made of the compound bacteria has spreading value because of its excellent clearing effect for organic and inorganic polluted water.