Studied the content and distribution of 18 environmental hazardous trace elementsin the lignite, fatty coal, anthracite and its burnt products by combustion simulatingexpriment in the one-dismensinal boiler.The transf...Studied the content and distribution of 18 environmental hazardous trace elementsin the lignite, fatty coal, anthracite and its burnt products by combustion simulatingexpriment in the one-dismensinal boiler.The transformations and concentration of 18 traceelements during different coal combustion were discussed.The results show that there aresome content distribution of 18 hazardous trace elements in every burnt product, but thelaw of concentration and dispersion of every trace element during different coal combustionis very different.Experiment results indicate that the transformation and concentrationof trace elements during coal combustion are related to the element contents and occur-rencesof trace elements in raw coal, but are also affected by some man-made factorssuch as the combustion method of boiler, combustion temperature and atmosphere, thetype of precipitators and so on.展开更多
We studied the geochemical characteristics of illite clay rocks and their importance from the 5hihezi Formation of Late Permian in the Hanxing mining area by means of ICP-M5 and sequential X-ray fluorescence spectrome...We studied the geochemical characteristics of illite clay rocks and their importance from the 5hihezi Formation of Late Permian in the Hanxing mining area by means of ICP-M5 and sequential X-ray fluorescence spectrometry. The results show that the amount of SiO2 is between 53.37% and 61.58% (by weight) and that of Al2O3 22.40% and 31.31% (by weight). The ratio of SiO2/Al2O3 lies between 1.71 and 2.75. The amount of K2O ranges from 1.11% to 2.56% (by weight). The amounts of Fe and Ti are higher than the theoretical values in illite clay rock would indicate. The amounts of some trace elements, such as Ga, As, Ba, Cu, Th and U are higher than their Clark values, while that of another 23 trace elements are found to be dose to their Clark values. The amounts of REE range from 22.59 to 570.54 μg/g, with an average of 163.23μg/g. The ratios of LREE/HREE range from 5.41 to 21.82, with an average of 8.87. These characteristics show that LREE are much richer in content than HREE. The REE distribution patterns of our samples were characterized by clearly negative Ce and Eu anomalies. We analyzed the sedimentary environment of the Hanxing mining area in Late Permian by the characteristic element ratio method. The ratios of Mn/Fe range from 0 to 0.0168, which are lower than those in a marine sedimentary environment. The ratios of Sr/Ba (0.20-0.41) are less than 1. These are all indications that the sediments of the Hanxing mining area in Late Permian form largely a continental sedimentary environment. The sedimentary water is freshwater, a conclusion reached on the basis of the ratios of Th/U (2.66-6.62) and of Ca/(Ca + Fe) (0.01-0.059); the average ratio of Fe2+/Fe3+ is 4.8. The sedimentary water condition is weakly acidic and weakly oxidative-weakly reductive, a conclusion reached on the basis of ratios of Fe2+/Fe3+ (4.8) and of Ceanom (-0.08).展开更多
The study of trace metals in the atmosphere and lake water is important due to their critical effects on humans, aquatic animals and the geochemical balance of ecosystems. The objective of this study was to investigat...The study of trace metals in the atmosphere and lake water is important due to their critical effects on humans, aquatic animals and the geochemical balance of ecosystems. The objective of this study was to investigate the concentration of trace metals in atmospheric and lake water samples during the rainy season (before and after precipitation) between November and December 2015. Typical methods of sample preparation for trace metal determination such as cloud point extraction, solid phase extraction and dispersive liquid- liquid micro-extraction are time-consuming and difficult to perform; therefore, there is a crucial need for development of more effective sample preparation procedure. A convection microwave assisted digestion procedure for extraction of trace metals was developed for use prior to inductively couple plasma-mass spectrometric determination. The result showed that metals like zinc (133.50-419.30 μg/m3) and aluminum (53.58-378.93 μg/m3) had higher concentrations in atmospheric samples as compared to lake samples before precipitation. On the other hand, the concentrations of zinc, aluminum, chromium and arsenic were significantly higher in lake samples after precipitation and lower in atmospheric samples. The relationship between physicochemical parameters (pH and turbidity) and heavy metal concentrations was investigated as well. Furthermore, enrichment factor analysis indicated that anthropogenic sources such as soil dust, biomass burning and fuel combustion influenced the metal concentrations in the atmosphere.展开更多
基金Supported by the National Natural Science Key Foundation of China(40133010)Natural Science Foundation of China of Anhui University of Science and Technology for ph.D to Research(DG414)
文摘Studied the content and distribution of 18 environmental hazardous trace elementsin the lignite, fatty coal, anthracite and its burnt products by combustion simulatingexpriment in the one-dismensinal boiler.The transformations and concentration of 18 traceelements during different coal combustion were discussed.The results show that there aresome content distribution of 18 hazardous trace elements in every burnt product, but thelaw of concentration and dispersion of every trace element during different coal combustionis very different.Experiment results indicate that the transformation and concentrationof trace elements during coal combustion are related to the element contents and occur-rencesof trace elements in raw coal, but are also affected by some man-made factorssuch as the combustion method of boiler, combustion temperature and atmosphere, thetype of precipitators and so on.
基金supported by the National Nature Science Foundation of China (Nos. 41072031 and 40172119)the Natural Science Foundation of Hebei Province,China (No.D2009000833)
文摘We studied the geochemical characteristics of illite clay rocks and their importance from the 5hihezi Formation of Late Permian in the Hanxing mining area by means of ICP-M5 and sequential X-ray fluorescence spectrometry. The results show that the amount of SiO2 is between 53.37% and 61.58% (by weight) and that of Al2O3 22.40% and 31.31% (by weight). The ratio of SiO2/Al2O3 lies between 1.71 and 2.75. The amount of K2O ranges from 1.11% to 2.56% (by weight). The amounts of Fe and Ti are higher than the theoretical values in illite clay rock would indicate. The amounts of some trace elements, such as Ga, As, Ba, Cu, Th and U are higher than their Clark values, while that of another 23 trace elements are found to be dose to their Clark values. The amounts of REE range from 22.59 to 570.54 μg/g, with an average of 163.23μg/g. The ratios of LREE/HREE range from 5.41 to 21.82, with an average of 8.87. These characteristics show that LREE are much richer in content than HREE. The REE distribution patterns of our samples were characterized by clearly negative Ce and Eu anomalies. We analyzed the sedimentary environment of the Hanxing mining area in Late Permian by the characteristic element ratio method. The ratios of Mn/Fe range from 0 to 0.0168, which are lower than those in a marine sedimentary environment. The ratios of Sr/Ba (0.20-0.41) are less than 1. These are all indications that the sediments of the Hanxing mining area in Late Permian form largely a continental sedimentary environment. The sedimentary water is freshwater, a conclusion reached on the basis of the ratios of Th/U (2.66-6.62) and of Ca/(Ca + Fe) (0.01-0.059); the average ratio of Fe2+/Fe3+ is 4.8. The sedimentary water condition is weakly acidic and weakly oxidative-weakly reductive, a conclusion reached on the basis of ratios of Fe2+/Fe3+ (4.8) and of Ceanom (-0.08).
基金supported by the Universiti Tunku Abdul Rahman under Universiti Research Grant(No.IPSR/RMC/UTARRF/C1-13/G03)
文摘The study of trace metals in the atmosphere and lake water is important due to their critical effects on humans, aquatic animals and the geochemical balance of ecosystems. The objective of this study was to investigate the concentration of trace metals in atmospheric and lake water samples during the rainy season (before and after precipitation) between November and December 2015. Typical methods of sample preparation for trace metal determination such as cloud point extraction, solid phase extraction and dispersive liquid- liquid micro-extraction are time-consuming and difficult to perform; therefore, there is a crucial need for development of more effective sample preparation procedure. A convection microwave assisted digestion procedure for extraction of trace metals was developed for use prior to inductively couple plasma-mass spectrometric determination. The result showed that metals like zinc (133.50-419.30 μg/m3) and aluminum (53.58-378.93 μg/m3) had higher concentrations in atmospheric samples as compared to lake samples before precipitation. On the other hand, the concentrations of zinc, aluminum, chromium and arsenic were significantly higher in lake samples after precipitation and lower in atmospheric samples. The relationship between physicochemical parameters (pH and turbidity) and heavy metal concentrations was investigated as well. Furthermore, enrichment factor analysis indicated that anthropogenic sources such as soil dust, biomass burning and fuel combustion influenced the metal concentrations in the atmosphere.