The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires ar...The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires are used in geotechnical applications.To determine the viability of this approach,laboratoryscale tests were conducted to investigate load-bearing capacity of circular footings on sand-tire shred(STS)mixtures with shredded waste tire contents of 5%e15%by weight and three different widths of shreds.The investigation focused on analyzing the thickness of layers composed of STS mixtures,the soil cap,and the impact of geogrids on bearing capacity.The results indicate that a specific mixture of sand and tire shreds provides the highest footing-bearing capacity.In addition,the optimal shred content and size were found to be 10%by weight and 2 cm×10 cm,respectively.Furthermore,for a given tire shred width,a particular length provides the largest bearing capacity.The results agree well with that of previous research conducted by the first author and his colleagues in direct shear and California bearing ratio(CBR)tests.The primary finding of this research is that the use of two-layered STS mixtures reinforced by geogrids significantly enhances the bearing capacity.展开更多
During the process of constructional backfill mining,the cemented paste backfill(CPB)typically exhibits a high degree of brittleness and limited resistance to failure.In this study,the mechanical and damage evolution ...During the process of constructional backfill mining,the cemented paste backfill(CPB)typically exhibits a high degree of brittleness and limited resistance to failure.In this study,the mechanical and damage evolution characteristics of waste tire steel fiber(WTSF)-modified CPB were studied through uniaxial compression tests,acoustic emission(AE)tests,and scanning electron microscopy(SEM).The results showed that the uniaxial compressive strength(UCS)decreased when the WTSF content was 0.5%,1%,and 1.5%.When the WTSF content reached 1%,the UCS of the modified CPB exhibited a minimal decrease(0.37 MPa)compared to that without WTSF.When the WTSF content was 0.5%,1%,and 1.5%,peak strain of the WTSF-modified CPB increased by 18%,31.33%,and 81.33%,while the elastic modulus decreased by 21.31%,26.21%,and 45.42%,respectively.The addition of WTSF enhances the activity of AE events in the modified CPB,resulting in a slower progression of the entire failure process.After the failure,the modified CPB retained a certain level of load-bearing capacity.Generally,the failure of the CPB was dominated by tensile cracks.After the addition of WTSF,a gradual increase in the proportion of tensile cracks was observed upon loading the modified CPB sample to the pore compaction stage.The three-dimensional localization of AE events showed that the WTSF-modified CPB underwent progressive damage during the loading,and the samples still showed good integrity after failure.Additionally,the response relationship between energy evolution and damage development of WTSF-modified CPB during uniaxial compression was analyzed,and the damage constitutive model of CPB samples with different WTSF contents was constructed.This study provides a theoretical basis for the enhancement of CPB modified by adding WTSF,serving as a valuable reference for the design of CPB constructional backfill.展开更多
Pneumatic tire modeling and validation have been the topic of several research papers, however, most of these papers only deal with pneumatic passenger and truck tires. In recent years, wheeled-scaled vehicles have ga...Pneumatic tire modeling and validation have been the topic of several research papers, however, most of these papers only deal with pneumatic passenger and truck tires. In recent years, wheeled-scaled vehicles have gained lots of attention as a feasible testing platform, nonetheless up to the authors’ knowledge there has been no research regarding the use of scaled tires and their effect on the overall vehicle performance characteristics. This paper presents a novel scaled electric combat vehicle tire model and validation technique. The pro-line lockdown tire size 3.00 × 7.35 is modeled using the Finite Element Analysis (FEA) technique and several materials including layered membrane, beam elements, and Mooney-Rivlin for rubber. The tire-rim assembly is then described, and the rigid body analysis is presented. The tire is then validated using an in-house custom-made static tire testing machine. The tire test rig is made specifically to test the pro-line tire model and is designed and manufactured in the laboratory. The tire is validated using vertical stiffness and footprint tests in the static domain at different operating conditions including several vertical loads. Then the tire is used to perform rolling resistance and steering analysis including the rolling resistance coefficient and the cornering stiffness. The analysis is performed at different operating conditions including longitudinal speeds of 5, 10, and 15 km/h. This tire model will be further used to determine the tractive and braking performance of the tire. Furthermore, the tire test rig will also be modified to perform cornering stiffness tests.展开更多
The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural netw...The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural network(SCNN)model for predicting volumetric and Marshall properties of asphalt mixtures modified with WTDC.The study is based on experimental data acquired from laboratory volumetric and Marshall properties testing on WTDCmodified asphalt mixtures(WTDC-MAM).The input variables comprised waste tire char content and asphalt binder content.The output variables comprised mixture unit weight,total voids,voids filled with asphalt,Marshall stability,and flow.Statistical coupled neural networks were utilized to predict the volumetric and Marshall properties of asphalt mixtures.For predictive modeling,the SCNN model is employed,incorporating a three-layer neural network and preprocessing techniques to enhance accuracy and reliability.The optimal network architecture,using the collected dataset,was a 2:6:5 structure,and the neural network was trained with 60%of the data,whereas the other 20%was used for cross-validation and testing respectively.The network employed a hyperbolic tangent(tanh)activation function and a feed-forward backpropagation.According to the results,the network model could accurately predict the volumetric and Marshall properties.The predicted accuracy of SCNN was found to be as high value>98%and low prediction errors for both volumetric and Marshall properties.This study demonstrates WTDC's potential as a low-cost,sustainable aggregate replacement.The SCNN-based predictive model proves its efficiency and versatility and promotes sustainable practices.展开更多
The comprehensive tire building and shaping processes are investigated through the finite element method(FEM)in this article.The mechanical properties of the uncured rubber from different tire components are investiga...The comprehensive tire building and shaping processes are investigated through the finite element method(FEM)in this article.The mechanical properties of the uncured rubber from different tire components are investigated through cyclic loading-unloading experiments under different strain rates.Based on the experiments,an elastoviscoplastic constitutive model is adopted to describe themechanical behaviors of the uncured rubber.The distinct mechanical properties,including the stress level,hysteresis and residual strain,of the uncured rubber can all be well characterized.The whole tire building process(including component winding,rubber bladder inflation,component stitching and carcass band folding-back)and the shaping process are simulated using this constitutive model.The simulated green tire profile is in good agreement with the actual profile obtained through 3D scanning.The deformation and stress of the rubber components and the cord reinforcements during production can be obtained fromthe FE simulation,which is helpful for judging the rationality of the tire construction design.Finally,the influence of the parameter“drum width”is investigated,and the simulated result is found to be consistent with the experimental observations,which verifies the effectiveness of the simulation.The established simulation strategy provides some guiding significance for the improvement of tire design parameters and the elimination of tire production defects.展开更多
The research provides valuable insights into the intricate world of Non-Pneumatic (NP) tire technology, covering various facets from modeling and validation to material properties, design optimization, and tire-soil i...The research provides valuable insights into the intricate world of Non-Pneumatic (NP) tire technology, covering various facets from modeling and validation to material properties, design optimization, and tire-soil interactions. It begins with an exploration of existing NP tire modeling techniques, emphasizing the importance of accurate and reliable models for NP tires, including static and dynamic validation methods, and demonstrating the influence of structural features and material properties on tire performance. The review emphasizes the challenges and prospects of NP tires and aims to support the development of innovative airless tire solutions. The reviewed papers collectively contribute to a deeper understanding of NP tires, their applications, and potential enhancements in performance and efficiency across various industries.展开更多
Environmental problems caused by waste tires are becoming increasingly prominent.There is an urgent need to find a green way to dispose of waste tires,and scholars have made considerable efforts in this regard.In the ...Environmental problems caused by waste tires are becoming increasingly prominent.There is an urgent need to find a green way to dispose of waste tires,and scholars have made considerable efforts in this regard.In the construction industry,rubber extracted from waste tires can be added to concrete to alleviate environmental problems to a certain extent.As a new building material,rubber concrete has superior properties compared to ordinary concrete and has been widely used in many fields.Numerous studies have been conducted worldwide to investigate the effect of waste tire rubber on the performance of concrete.It has been reported that the addition of waste tire rubber has a significant influence on the performance of concrete.Workability influences the hardened performance of rubber concrete,especially the durability.Based on the current research results,the workability and durability of concrete manufactured with waste tire rubber,including water absorption and permeability,carbonation resistance,chloride ion permeability resistance,and freeze-thaw resistance,are summarized in this paper.It is concluded that the addition of waste tires has a negative effect on the workability of concrete.In terms of durability,concrete exhibits better chloride ion penetration resistance and frost resistance,with a higher water absorption rate,and lower anti-permeability and carbonation resistance owing to the addition of waste tire rubber.展开更多
There are different types of pollutants that are harmful to the environment, including smog, chemicals that are dumped into rivers, scrap tires, etc. The latter have the particularity that it is not possible to recycl...There are different types of pollutants that are harmful to the environment, including smog, chemicals that are dumped into rivers, scrap tires, etc. The latter have the particularity that it is not possible to recycle them to manufacture new tires. In the present work, hydraulic concrete plates added with waste tire rubber were manufactured to modify their sound absorption capacity. It was found that the rubber additions produce changes in the density of the material and in the sound absorption capacity. When the material is exposed to high-frequency sounds that correspond to high-pitched sounds, its absorption capacity increases. On the contrary, when the test frequency is low, that is, bass sounds, the sound absorption capacity decreases. The results obtained in this work suggest that the proposed mixtures are suitable for the possible manufacture of acoustic insulating shields.展开更多
This paper outlines a mechanical transformation process for rubber recycling, demonstrating the development of a new material from used tires. With the crumbs obtained using a crusher-compactor, a novel material for t...This paper outlines a mechanical transformation process for rubber recycling, demonstrating the development of a new material from used tires. With the crumbs obtained using a crusher-compactor, a novel material for the manufacture of O-rings has been developed, with properties close to those found on the market. The process includes an experimental methodology of a sulfur vulcanization system choice and the quantification of ingredients, as well as the experimental determination of cure parameters. Mechanical tests on the samples completed the work by providing the mechanical characteristics of both unaged and aged (thermo-oxidative ageing) novel material. This process has a high potential for sustainable development and industrialization, making it a valuable contribution to the recycling of rubber in African developing countries.展开更多
文摘The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires are used in geotechnical applications.To determine the viability of this approach,laboratoryscale tests were conducted to investigate load-bearing capacity of circular footings on sand-tire shred(STS)mixtures with shredded waste tire contents of 5%e15%by weight and three different widths of shreds.The investigation focused on analyzing the thickness of layers composed of STS mixtures,the soil cap,and the impact of geogrids on bearing capacity.The results indicate that a specific mixture of sand and tire shreds provides the highest footing-bearing capacity.In addition,the optimal shred content and size were found to be 10%by weight and 2 cm×10 cm,respectively.Furthermore,for a given tire shred width,a particular length provides the largest bearing capacity.The results agree well with that of previous research conducted by the first author and his colleagues in direct shear and California bearing ratio(CBR)tests.The primary finding of this research is that the use of two-layered STS mixtures reinforced by geogrids significantly enhances the bearing capacity.
基金financially supported by the National Natural Science Foundation of China(Nos.52274143 and 51874284).
文摘During the process of constructional backfill mining,the cemented paste backfill(CPB)typically exhibits a high degree of brittleness and limited resistance to failure.In this study,the mechanical and damage evolution characteristics of waste tire steel fiber(WTSF)-modified CPB were studied through uniaxial compression tests,acoustic emission(AE)tests,and scanning electron microscopy(SEM).The results showed that the uniaxial compressive strength(UCS)decreased when the WTSF content was 0.5%,1%,and 1.5%.When the WTSF content reached 1%,the UCS of the modified CPB exhibited a minimal decrease(0.37 MPa)compared to that without WTSF.When the WTSF content was 0.5%,1%,and 1.5%,peak strain of the WTSF-modified CPB increased by 18%,31.33%,and 81.33%,while the elastic modulus decreased by 21.31%,26.21%,and 45.42%,respectively.The addition of WTSF enhances the activity of AE events in the modified CPB,resulting in a slower progression of the entire failure process.After the failure,the modified CPB retained a certain level of load-bearing capacity.Generally,the failure of the CPB was dominated by tensile cracks.After the addition of WTSF,a gradual increase in the proportion of tensile cracks was observed upon loading the modified CPB sample to the pore compaction stage.The three-dimensional localization of AE events showed that the WTSF-modified CPB underwent progressive damage during the loading,and the samples still showed good integrity after failure.Additionally,the response relationship between energy evolution and damage development of WTSF-modified CPB during uniaxial compression was analyzed,and the damage constitutive model of CPB samples with different WTSF contents was constructed.This study provides a theoretical basis for the enhancement of CPB modified by adding WTSF,serving as a valuable reference for the design of CPB constructional backfill.
文摘Pneumatic tire modeling and validation have been the topic of several research papers, however, most of these papers only deal with pneumatic passenger and truck tires. In recent years, wheeled-scaled vehicles have gained lots of attention as a feasible testing platform, nonetheless up to the authors’ knowledge there has been no research regarding the use of scaled tires and their effect on the overall vehicle performance characteristics. This paper presents a novel scaled electric combat vehicle tire model and validation technique. The pro-line lockdown tire size 3.00 × 7.35 is modeled using the Finite Element Analysis (FEA) technique and several materials including layered membrane, beam elements, and Mooney-Rivlin for rubber. The tire-rim assembly is then described, and the rigid body analysis is presented. The tire is then validated using an in-house custom-made static tire testing machine. The tire test rig is made specifically to test the pro-line tire model and is designed and manufactured in the laboratory. The tire is validated using vertical stiffness and footprint tests in the static domain at different operating conditions including several vertical loads. Then the tire is used to perform rolling resistance and steering analysis including the rolling resistance coefficient and the cornering stiffness. The analysis is performed at different operating conditions including longitudinal speeds of 5, 10, and 15 km/h. This tire model will be further used to determine the tractive and braking performance of the tire. Furthermore, the tire test rig will also be modified to perform cornering stiffness tests.
基金the University of Teknologi PETRONAS(UTP),Malaysia,and Ahmadu Bello University,Nigeria,for their vital help and availability of laboratory facilities that allowed this work to be conducted successfully.
文摘The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural network(SCNN)model for predicting volumetric and Marshall properties of asphalt mixtures modified with WTDC.The study is based on experimental data acquired from laboratory volumetric and Marshall properties testing on WTDCmodified asphalt mixtures(WTDC-MAM).The input variables comprised waste tire char content and asphalt binder content.The output variables comprised mixture unit weight,total voids,voids filled with asphalt,Marshall stability,and flow.Statistical coupled neural networks were utilized to predict the volumetric and Marshall properties of asphalt mixtures.For predictive modeling,the SCNN model is employed,incorporating a three-layer neural network and preprocessing techniques to enhance accuracy and reliability.The optimal network architecture,using the collected dataset,was a 2:6:5 structure,and the neural network was trained with 60%of the data,whereas the other 20%was used for cross-validation and testing respectively.The network employed a hyperbolic tangent(tanh)activation function and a feed-forward backpropagation.According to the results,the network model could accurately predict the volumetric and Marshall properties.The predicted accuracy of SCNN was found to be as high value>98%and low prediction errors for both volumetric and Marshall properties.This study demonstrates WTDC's potential as a low-cost,sustainable aggregate replacement.The SCNN-based predictive model proves its efficiency and versatility and promotes sustainable practices.
基金funded by the NationalNatural Science Foundation of China (Nos.11902229,11502181)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos.XDB22040502,XDC06030200).
文摘The comprehensive tire building and shaping processes are investigated through the finite element method(FEM)in this article.The mechanical properties of the uncured rubber from different tire components are investigated through cyclic loading-unloading experiments under different strain rates.Based on the experiments,an elastoviscoplastic constitutive model is adopted to describe themechanical behaviors of the uncured rubber.The distinct mechanical properties,including the stress level,hysteresis and residual strain,of the uncured rubber can all be well characterized.The whole tire building process(including component winding,rubber bladder inflation,component stitching and carcass band folding-back)and the shaping process are simulated using this constitutive model.The simulated green tire profile is in good agreement with the actual profile obtained through 3D scanning.The deformation and stress of the rubber components and the cord reinforcements during production can be obtained fromthe FE simulation,which is helpful for judging the rationality of the tire construction design.Finally,the influence of the parameter“drum width”is investigated,and the simulated result is found to be consistent with the experimental observations,which verifies the effectiveness of the simulation.The established simulation strategy provides some guiding significance for the improvement of tire design parameters and the elimination of tire production defects.
文摘The research provides valuable insights into the intricate world of Non-Pneumatic (NP) tire technology, covering various facets from modeling and validation to material properties, design optimization, and tire-soil interactions. It begins with an exploration of existing NP tire modeling techniques, emphasizing the importance of accurate and reliable models for NP tires, including static and dynamic validation methods, and demonstrating the influence of structural features and material properties on tire performance. The review emphasizes the challenges and prospects of NP tires and aims to support the development of innovative airless tire solutions. The reviewed papers collectively contribute to a deeper understanding of NP tires, their applications, and potential enhancements in performance and efficiency across various industries.
基金supported by the financial support received from Program for Innovative Research Team(in Science and Technology)in University of Henan Province of China(Grant No.20IRTSTHN009)National Natural Science Foundation of China(Grant Nos.U2040224,52179145)Natural Science Foundation of Henan(Grant Nos.212300410018,222300420081).
文摘Environmental problems caused by waste tires are becoming increasingly prominent.There is an urgent need to find a green way to dispose of waste tires,and scholars have made considerable efforts in this regard.In the construction industry,rubber extracted from waste tires can be added to concrete to alleviate environmental problems to a certain extent.As a new building material,rubber concrete has superior properties compared to ordinary concrete and has been widely used in many fields.Numerous studies have been conducted worldwide to investigate the effect of waste tire rubber on the performance of concrete.It has been reported that the addition of waste tire rubber has a significant influence on the performance of concrete.Workability influences the hardened performance of rubber concrete,especially the durability.Based on the current research results,the workability and durability of concrete manufactured with waste tire rubber,including water absorption and permeability,carbonation resistance,chloride ion permeability resistance,and freeze-thaw resistance,are summarized in this paper.It is concluded that the addition of waste tires has a negative effect on the workability of concrete.In terms of durability,concrete exhibits better chloride ion penetration resistance and frost resistance,with a higher water absorption rate,and lower anti-permeability and carbonation resistance owing to the addition of waste tire rubber.
文摘There are different types of pollutants that are harmful to the environment, including smog, chemicals that are dumped into rivers, scrap tires, etc. The latter have the particularity that it is not possible to recycle them to manufacture new tires. In the present work, hydraulic concrete plates added with waste tire rubber were manufactured to modify their sound absorption capacity. It was found that the rubber additions produce changes in the density of the material and in the sound absorption capacity. When the material is exposed to high-frequency sounds that correspond to high-pitched sounds, its absorption capacity increases. On the contrary, when the test frequency is low, that is, bass sounds, the sound absorption capacity decreases. The results obtained in this work suggest that the proposed mixtures are suitable for the possible manufacture of acoustic insulating shields.
文摘This paper outlines a mechanical transformation process for rubber recycling, demonstrating the development of a new material from used tires. With the crumbs obtained using a crusher-compactor, a novel material for the manufacture of O-rings has been developed, with properties close to those found on the market. The process includes an experimental methodology of a sulfur vulcanization system choice and the quantification of ingredients, as well as the experimental determination of cure parameters. Mechanical tests on the samples completed the work by providing the mechanical characteristics of both unaged and aged (thermo-oxidative ageing) novel material. This process has a high potential for sustainable development and industrialization, making it a valuable contribution to the recycling of rubber in African developing countries.