The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were establis...The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were established on north and east sides of the opencast coal mining area, and samples were collected at 50 m, 550 m, and 1550 m from the pit on each transect. Control samples were collected from a grassland station 8 km from the opencast coal mining area that was not disturbed by mining. Four replicate soil samples were collected at each point on the four transects. Soil physicochemical properties and enzyme activities were determined, and correlations between soil properties and stoichiometric ratios and enzyme activities were explored using redundancy analysis. The increase in distance from mining did not significantly affect soil properties, although soil urease activity was significantly lower than that of the control area. Soil properties 1550 m from the mine pit were similar to those at the grassland control. In addition, soil total nitrogen had the greatest effect on soil stoichiometry, and soil total potassium had the greatest effect on soil enzyme activities. Coal dust from opencast mining might be the main factor affecting soil stoichiometry and enzyme activities. The results of this study provide direction for the next step in studying the influence of mining areas on soil properties and processes.展开更多
The dominant plant litter plays a crucial role in carbon(C)and nutrients cycling as well as ecosystem functions maintenance on the Qinghai-Tibet Plateau(QTP).The impact of litter decomposition of dominant plants on ed...The dominant plant litter plays a crucial role in carbon(C)and nutrients cycling as well as ecosystem functions maintenance on the Qinghai-Tibet Plateau(QTP).The impact of litter decomposition of dominant plants on edaphic parameters and grassland productivity has been extensively studied,while its decomposition processes and relevant mechanisms in this area remain poorly understood.We conducted a three-year litter decomposition experiment in the Gansu Gannan Grassland Ecosystem National Observation and Research Station,an alpine meadow ecosystem on the QTP,to investigate changes in litter enzyme activities and bacterial and fungal communities,and clarify how these critical factors regulated the decomposition of dominant plant Elymus nutans(E.nutans)litter.The results showed that cellulose and hemicellulose,which accounted for 95%of the initial lignocellulose content,were the main components in E.nutans litter decomposition.The litter enzyme activities ofβ-1,4-glucosidase(BG),β-1,4-xylosidase(BX),andβ-D-cellobiosidase(CBH)decreased with decomposition while acid phosphatase,leucine aminopeptidase,and phenol oxidase increased with decomposition.We found that both litter bacterial and fungal communities changed significantly with decomposition.Furthermore,bacterial communities shifted from copiotrophic-dominated to oligotrophic-dominated in the late stage of litter decomposition.Partial least squares path model revealed that the decomposition of E.nutans litter was mainly driven by bacterial communities and their secreted enzymes.Bacteroidota and Proteobacteria were important producers of enzymes BG,BX,and CBH,and their relative abundances were tightly positively related to the content of cellulose and hemicellulose,indicating that Bacteroidota and Proteobacteria are the main bacterial taxa of the decomposition of E.nutans litter.In conclusion,this study demonstrates that bacterial communities are the main driving forces behind the decomposition of E.nutans litter,highlighting the vital roles of bacterial communities in affecting the ecosystem functions of the QTP by regulating dominant plant litter decomposition.展开更多
It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of s...It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of soil enzyme activities and SOC fractions(particulate organic carbon(POC)and mineral-associated organic carbon(MAOC))to five typical desert plant communities(Convolvulus tragacanthoides,Ephedra rhytidosperma,Stipa breviflora,Stipa tianschanica var.gobica,and Salsola laricifolia communities)in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia Hui Autonomous Region,China.We recorded the plant community information mainly including the plant coverage and herb and shrub species,and obtained the aboveground biomass and plant species diversity through sample surveys in late July 2023.Soil samples were also collected at depths of 0–10 cm(topsoil)and 10–20 cm(subsoil)to determine the soil physicochemical properties and enzyme activities.The results showed that the plant coverage and aboveground biomass of S.laricifolia community were significantly higher than those of C.tragacanthoides,S.breviflora,and S.tianschanica var.gobica communities(P<0.05).Soil enzyme activities varied among different plant communities.In the topsoil,the enzyme activities of alkaline phosphatase(ALP)andβ-1,4-glucosidas(βG)were significantly higher in E.rhytidosperma and S.tianschanica var.gobica communities than in other plant communities(P<0.05).The topsoil had higher POC and MAOC contents than the subsoil.Specifically,the content of POC in the topsoil was 18.17%–42.73%higher than that in the subsoil.The structural equation model(SEM)indicated that plant species diversity,soil pH,and soil water content(SWC)were the main factors influencing POC and MAOC.The soil pH inhibited the formation of POC and promoted the formation of MAOC.Conversely,SWC stimulated POC production and hindered MAOC formation.Our study aimed to gain insight into the effects of desert plant communities on soil enzyme activities and SOC fractions,as well as the drivers of SOC fractions in the proluvial fan in the eastern foothills of the Helan Mountain and other desert ecosystems.展开更多
An in vitro study was conducted to investigate the impacts of microplastics on enzyme activities and soil bacteria. The study included four different treatments of microplastics including a control. Different levels o...An in vitro study was conducted to investigate the impacts of microplastics on enzyme activities and soil bacteria. The study included four different treatments of microplastics including a control. Different levels of microplastics were applied to the soil ranging from 0% to 5%, to assess the impacts of microplastics on soil enzymes and subsequent soil bacteria. After 30 days of incubation, the soil samples were collected and growth parameters of bacteria were assessed. Activities of β-glucosidase, urease and dehydrogenase enzymes were also determined. Our results showed that the presence of microplastics in the soil significantly reduced bacterial population together with bacterial strains. The activities of β-glucosidase, urease and dehydrogenase enzymes were reduced significantly to approximately 32%, 40% and 50% in microplastics treated soils respectively. Concentration of microplastic has a role to play towards this direction;the higher the concentration of microplastic the greater is the impact on enzymes and soil bacteria. The present study on the microbial soil health vis-à-vis microplastic application indicates that the material can have negative effect on the soil bacterial population of and thus ultimately may jeopardize soil health and crop production.展开更多
Curry leaves, scientifically termed Murraya koenigii, are renowned in South Asian cuisine for their flavor enhancement and potential health benefits, including antioxidative, anti-inflammatory, and antidiabetic proper...Curry leaves, scientifically termed Murraya koenigii, are renowned in South Asian cuisine for their flavor enhancement and potential health benefits, including antioxidative, anti-inflammatory, and antidiabetic properties. This study aimed to evaluate the impact of thermal processing methods on curry leaves by analysing Total Phenolic Content (TPC), Total Flavonoid Content (TFC), antioxidant activity, and metabolizing enzyme inhibition. Fresh curry leaves were subjected to thermal treatments: Oven-dried at 60˚C and Air-dried at 25˚C for 2 weeks. Extracts were prepared using Ethanol and water solvents. Results indicated that Air-dried leaves exhibited significantly higher TPC (5132.65 mg GAE/100 g) and TFC (243.13 mg CE/100 g) compared to Fresh and Oven-dried leaves. Antioxidant assays show that oven-dried curry leaves at 60˚C displayed higher results in NORS, FRAP, and TEAC assays compared to Fresh and Air-dried leaves. Ethanol extracts showed better extraction of bioactive compounds than aqueous extracts. Moreover, Lipase inhibition activity was notably high, indicating potential health benefits. This study provides valuable insights into the effects of processing methods on curry leaf extracts, emphasizing the importance of solvent selection for optimal extraction of bioactive compounds.展开更多
Since the catalytic activity of most nanozymes is still far lower than the corresponding natural enzymes,there is urgent need to discover novel highly efficient enzyme-like materials.In this work,Co_(3)V_(2)O_(8)with ...Since the catalytic activity of most nanozymes is still far lower than the corresponding natural enzymes,there is urgent need to discover novel highly efficient enzyme-like materials.In this work,Co_(3)V_(2)O_(8)with hollow hexagonal prismatic pencil structures were prepared as novel artificial enzyme mimics.They were then decorated by photo-depositing Ag nanoparticles(Ag NPs)on the surface to further improve its catalytic activities.The Ag NPs decorated Co_(3)V_(2)O_(8)(ACVPs)showed both excellent oxidase-and peroxidase-like catalytic activities.They can oxidize the colorless 3,3’,5,5’-tetramethylbenzidine rapidly to induce a blue change.The enhanced enzyme mimetic activities can be attributed to the surface plasma resonance(SPR)effect of Ag NPs as well as the synergistic catalytic effect between Ag NPs and Co_(3)V_(2)O_(8),accelerating electron transfer and promoting the catalytic process.ACVPs were applied in constructing a colorimetric sensor,validating the occurrence of the Fenton reaction,and disinfection,presenting favorable catalytic performance.The enzyme-like catalytic mechanism was studied,indicating the chief role of⋅O_(2)-radicals in the catalytic process.This work not only discovers a novel functional material with double enzyme mimetic activity but also provides a new insight into exploiting artificial enzyme mimics with highly efficient catalytic ability.展开更多
[Objective] This study was conducted to expound the fertility improvement effect in continuous-cropping sugarcane field and provide reference for establishment of rational sugarcane fertilization system and improvemen...[Objective] This study was conducted to expound the fertility improvement effect in continuous-cropping sugarcane field and provide reference for establishment of rational sugarcane fertilization system and improvement of soil quality in continuous-cropping sugarcane field. [Method] The soil in the experimental region is latosolic red soil which was planted with sugarcane for 11 years continuously, and 8 treatments including sole application of chemical fertilizers, sole application of organ- ic fertilizer, and combined application of organic fertilizer and chemical fertilizers were designed according to different fertilization measures. The effects of different fertilization treatments on soil microbial biomass, soil enzyme activities and related fertility factors were determined. [Result} Different fertilization treatments all showed soil microbial biomass N, C and P and activities of soil acid phosphatase, catalase, sucrase and urease higher than the CK. Soil microbial biomass N increased by 5.56%-67.13%, soil microbial biomass C increased by 4.01%-20.40%, and soil mi- crobial biomass P increased by 6.39%-67.02%. The activity of acid phosphatase was improved by 12.96%-35.19%, the activity of catalase was improved by 18.24% -78.93%, the activity of sucrase was improved by 3.00%-42.00%, and the activity of urease was improved by 1.21%-23.43%. However, the soil nutrients of different fertilization treatments increased non-significantly (P〉0.05). Soil microbial biomass N, C and P and activities of acid phosphatase, catalase and urease were in significant (P〈0.05) or very significant correlation (P〈0.01) with contents of soil rapidly available P, rapidly available K and total N. [Conclusion] The evaluation of improvement of soil fertility in continuous-cropping sugarcane field using soil microbial biomass and enzyme activities as indexes is more comprehensive and sensitive.展开更多
[Objective] This paper aimed at exploring the effects of different nitrogen application methods on the enzyme activities of leaves at ear position in late growth stage of maize. [Method] By pot experiment, the superox...[Objective] This paper aimed at exploring the effects of different nitrogen application methods on the enzyme activities of leaves at ear position in late growth stage of maize. [Method] By pot experiment, the superoxide dismutase (SOD) activity, peroxidase (POD) activity, malonyl dialdehyde (MDA) content and soluble protein content were determined. [Result] At the filling stage and ripening stage, with the increasing of nitrogen application rate, MDA content gradually decreased, while SOD activity, POD activity and soluble protein content increased. MDA content with two topdressing nitrogen was lower than that with one top dressing nitrogen at the same nitrogen application rate, while SOD activity, POD activity and soluble protein content with two topdressing nitrogen were higher than that with one topdressing nitrogen. [Conclusion] Different nitrogen application methods have relatively significant effects on the MDA content, SOD activity, POD activity and soluble protein content, which is of certain directive significance for preventing spring maize prematuration.展开更多
The changes of hydrogen peroxide (H2O2) metabolism and antioxidant enzyme activities in a hybrid poplar (Populus simonii xp. pyramidalis 'Opera 8277') in response to rnechanical damage (MD) and herbivore wound...The changes of hydrogen peroxide (H2O2) metabolism and antioxidant enzyme activities in a hybrid poplar (Populus simonii xp. pyramidalis 'Opera 8277') in response to rnechanical damage (MD) and herbivore wounding (HW) were investigated to determine whether H2O2 could function as the secondary messenger in the signaling of systemic resistance. Results show that H2O2 was generated in wounded leaves through MD and HW treatments and systemically in unwounded leaves around the wounded leaves. The activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were also enhanced. However, the H2O2 accumulation and antioxidant enzyme activities were inhibited in MD leaves through the pretreatment with DPI (which is a specific inhibitor of NADPH oxidase). The results of this study suggest that H2O2 could be systemically induced by MD and HW treatments, and H2O2 metabolism was closely related to the change in SOD, APX and CAT activities. A high level of antioxidant enzymes could decrease membrane lipid peroxidation levels and effectively induce plant defense responses.展开更多
A study was conducted to determine the effects of elevated CO2 on soil N process at Changbai Mountain in Jilin Province, northeastern China (42°24"N, 128°06"E, and 738 m elevation). A randomized complete...A study was conducted to determine the effects of elevated CO2 on soil N process at Changbai Mountain in Jilin Province, northeastern China (42°24"N, 128°06"E, and 738 m elevation). A randomized complete block design of ambient and elevated CO2 was established in an open-top chamber facility in the spring of 1999. Changpai Scotch pine (Pinus sylvestris var. sylvestriformis seeds were sowed in May, 1999 and CO2 fumigation treatments began after seeds germination. In each year, the exposure started at the end of April and stopped at the end of October. Soil samples were collected in June and August 2006 and in June 2007, and soil nitrifying, denitrifying and N2-fixing enzyme activities were measured. Results show that soil nitrifying enzyme activities (NEA) in the 5-10 cm soil layer were significantly increased at elevated CO2 by 30.3% in June 2006, by 30.9% in August 2006 and by 11.3% in June 2007. Soil denitrifying enzyme activities (DEA) were significantly decreased by elevated CO2 treatment in June 2006 (P 〈 0.012) and August 2006 (P 〈 0.005) samplings in our study; no significant difference was detected in June 2007, and no significant changes in N2-fixing enzyme activity were found. This study suggests that elevated CO2 can alter soil nitrifying enzyme and denitrifying enzyme activities.展开更多
[Objective] The aim of the study was to determine whether phytotoxicity of TeA against Echinochloa crus-galli leaves was correlated with oxidative stress caused by generation of reactive oxygen and the changes of anti...[Objective] The aim of the study was to determine whether phytotoxicity of TeA against Echinochloa crus-galli leaves was correlated with oxidative stress caused by generation of reactive oxygen and the changes of antioxidant enzymes activity.[Method] The changes of malondialdehyde(MDA)content,hydrogen peroxide(H2O2),and activities of superoxide dismutase(SOD),glutathione reductase(GR)and catalase(CAT)were studied by leaf segment method in vitro.[Result] After the treatment of 500 μmol/L TeA,the content of MDA and H2O2 increased by 247.86% and 67.00%,respectively,indicating that the accumulation of MDA and H2O2 in E.crus-galli leaves was due to the reactive oxygen burst induced by TeA.TeA induced a significant increase in activities of SOD,GR and CAT.At 500 μmol/L TeA,activities of SOD,GR and CAT increased more than one fold compared with the control.[Conclusion] TeA could not only cause oxidative stress in leaves of E.crus-galli through the induction of reactive oxygen,but also induce the increasing of antioxidant enzyme activity.展开更多
The paper was to explore the effect of trace and secondary elements on scab of cucurbits ( Cladosporium cucumerinum) and their effects on enzyme activities of cucumber plants. [ Method ] Indoor antifungd experiment ...The paper was to explore the effect of trace and secondary elements on scab of cucurbits ( Cladosporium cucumerinum) and their effects on enzyme activities of cucumber plants. [ Method ] Indoor antifungd experiment and pot test was carried out to study the control effect of different trace and secondary dements on scab of cucu.rbits; after trace and secondary element compounds were sprayed for 7 d, the content of soluble protein and malondialdehyde (MDA) and the activities of peroxidase (POD) and superoxide dismutase (SOD) of cucumber leaves during seedling stage were simultaneously detected. [ Result] The inhibi- tion effects on scab of cucurbits were found in the three trace and secondary dements, especially for the CaC12 (66.9%), and about 54.6% and 24.1% for ZnSO4 and H3 BO3 , respectively. When cucumber plants were infected by scab of cuea.rbits, the contents of MDA for all treatments were significantly decreased in cucum- ber leaves after spraying the three trace and secondary elements compared with control. The contents of soluble protein in cucumber seedling were increased by Zn- SO4 and H3 BO3 application, while the contents of POD and SOD were increased on ZnSO4 and CaCI2 treatments. The defense system of cucumber was induced and strengthened by application of the three trace and secondary elements. [ Conclusion ] The results provided the theoretical basis for practical application and research on resistance mechanism of using trace and secondary dements to control scab of eueurbits.展开更多
Due to its strong and effective insecticidal properties, transgenic Bt+CpTI cotton has witnessed an expanding planting area in recent years, and the impact of its cultivation on soil ecosystem becomes an important pa...Due to its strong and effective insecticidal properties, transgenic Bt+CpTI cotton has witnessed an expanding planting area in recent years, and the impact of its cultivation on soil ecosystem becomes an important part of environmental risk assessment. Using transgenic Bt+CpTI cotton sGK321 and its parental homologous conventional cotton Shiyuan 321 as the study objects, a comparative analysis was conducted on the changes in enzyme activities (urease, alkaline phosphatase, and catalase) of the rhizosphere soil and changes in the number of culturable microor-ganisms (bacteria, fungi, and actinomycetes) at different growth stages (seedling stage, budding stage, flower and bol stage, and bol opening stage) of sGK321 and Shiyuan 321 under the condition of 13 years field plantings. The results showed that, the populations of bacteria, fungi, and actinomycete and the soil enzyme activi-ties of urease, alkaline phosphatase and catalase had a similar variation trend along with the cotton growing process for transgenic cotton and conventional cotton. Some occasional and inconsistent effects on soil enzyme activities and soil fungi composi-tion in the rhizosphere soil of transgenic Bt+CpTI cotton were found at the seedling stage, budding stage, flower and bol stage as compared with that of conventional cotton. The amount of bacteria and actinomycetes were not significantly different during a certain stage; however, the activities of urease, catalase, alkaline phos-phatase, also with the number of fungi were significantly different, e.g. the urease activities at seedling stage, the alkaline phosphatase at seedling and budding stages, and the soil culturable fungi at flower and bol stage were less than that of conven-tional cotton, while the soil alkaline phosphatase activities at flower and bol stage were higher. Cluster analysis showed that soil enzyme activities and microbial popu-lation changed mainly along the growth processes, suffering little from the planting of transgenic Bt+CpTI cotton.展开更多
[Objective] This study aimed to determine activities of antioxidant enzymes during gland morphogenesis in cotton, thoroughly explore physiological changes of cotton and provide a scientific basis for the cultivation o...[Objective] This study aimed to determine activities of antioxidant enzymes during gland morphogenesis in cotton, thoroughly explore physiological changes of cotton and provide a scientific basis for the cultivation of excellent cotton varieties. [Method] Based on determination of gossypol contents and antioxidant enzymes ac- tivities during gland morphogenesis in three cotton varieties (Chuanmian2802, Xiang- mian18 and XianwuN5), metabolism of gossypol and morphogenesis of gland in cot- ton were explored. [Result] After gland morphogenesis, the content of gossypol in Chuanmian2802 was gradually reduced in the early period of seed germination, which slowly increased since the 5th d after germination; however, during the seed germination period, the content of gossypol in Xiangmian18 had a slowly increasing trend and was gradually close to the content of gossypol in Chuanmian2802. The results showed that activities of SOD, POD and CAT increased in seed germination, which was contributive to remove the superoxide radicals, decrease the peroxide lev- el, reduce damages to the membrane, enhance the body's resistance to lipid oxida- tion and increase resistance ability to stress. [Conclusion] This study laid the scientif- ic foundation for understanding the characteristics of gland morphogenesis in cotton and cotton cultivation by using gland traits.展开更多
[Objective] The aim was to provide theoretical basis for speeding up the popularization of Eucalyptus dunnii.[Method] Differences in phenolic compounds and related enzyme activities between hard rooting E.dunnii and e...[Objective] The aim was to provide theoretical basis for speeding up the popularization of Eucalyptus dunnii.[Method] Differences in phenolic compounds and related enzyme activities between hard rooting E.dunnii and easily rooting E.urophylla×E.grandis clone (U9) were studied.[Result] There were significant differences in contents of phenolic compounds and activities of indole acetic acid oxidase (IAAO),andperoxidase (POD) and polyphenol oxidase (PPO) between the two Eucalyptus species.Compared with U9,contents of phenolic compounds and POD activity of E.dunnii cuttings were relatively high,while activities of IAAO and PPO were relatively low.[Conclusion] More phenolic compounds and the differences in related enzyme activities might be the major factors to result in hard rooting of E.dunnii cuttings.展开更多
[Objective] The aim was to study the effects of combined of manure and fertilizer on the content of nutrients in purplish soil as well as release dynamics of enzyme activities.[Method] The effects of manure and fertil...[Objective] The aim was to study the effects of combined of manure and fertilizer on the content of nutrients in purplish soil as well as release dynamics of enzyme activities.[Method] The effects of manure and fertilizer application on the content of AOM,NH+4-N and NO-3-N in soil as well as release dynamics of enzyme activities were studied by means of simulation culturing.[Result] In the treatments of combined application of simulation culture experiment,the content of active organic matters,NH+4-N,NO-3-N and soil enzyme activities changed dynamically,which showed a shape of inverted "S" with two or more peaks.Compared with the treatment of fertilization,their peaks were relatively flat and occurred relatively late,while the treatment of fertilization had only one but the highest peak.The content of active organic matter came to top around 10 d in the order of cow5fertilizer5pig5fertilizer5cow manurepig manurefertilizer Ⅰfertilizer Ⅱ;the activity of urease came to top around 10 d in all treatments and in the order of pig manurecow5fertilizer5cow manurefertilizer Ⅰfertilizer Ⅱpig5fertilizer5.The activity of saccharase was in the order of pig5fertilizer5pig manurecow5fertilizer5cow manureCKfertilizer Ⅱfertilizer Ⅰ.[Conclusion] The study could provide the theoretical basis for reasonable application of manure and fertilizer.展开更多
[Objective] In order to explore the mechanism of combined inoculation mi- croorganisms in improving coastal saline soil property and plant growth. [Method] The pot experiment was used to assess the effects of differen...[Objective] In order to explore the mechanism of combined inoculation mi- croorganisms in improving coastal saline soil property and plant growth. [Method] The pot experiment was used to assess the effects of different inoculated proportion of arbuscular mycorrhizal fungi (AMF) and Phosphate-sotubilizing fungus. Apophysomyces spartina, on growth, chlorophyll contents, P-uptake of castor bean (Ricinus communis L.) and rhizosphere soil pH values, available P concentrations, enzyme activities. [Result] The mixed inoculation of AMF and A. spartina significantly reduced soil pH value, increased soil available phosphorous contents, improved the activities of soil invertase, urease, neutral phosphatase, and alkaline phosphatase. Chlorophyll contents, P-uptake, and plant dry weight of castor bean were also in- creased. The optimal proportion of the number of AMF spores to A. spartina colonies was 28.56:11.5×10^5, which had positive effects on saline soil and could stimulate plant growth under greenhouse condition. [Conclusion] Appropriate propor- tion of AMF and A. spartina had the potential to enhance coastal saline soil prop- erty and promote castor bean growth.展开更多
[Objective] Mononychellus tanajoa is a mite speices recently invaded into China in 2008. Temperature is one of the most important ecological factors affecting the growth and reproduction of M. tanajoa. The objective o...[Objective] Mononychellus tanajoa is a mite speices recently invaded into China in 2008. Temperature is one of the most important ecological factors affecting the growth and reproduction of M. tanajoa. The objective of the current study was to reveal the effects of high temperature incubation on the activities of some protective enzymes in M. tanajoa at different growth stages. The results would contribute to the understanding of the adaptable distribution of M. tanajoa after its invasion into China, the mechanisms in its invasion, diffusion and ecological adaptation, and the monitor- ing, early warning and effective prevention of its damage. [Method] Six protective enzymes, Le. polyphenol oxidase (PPO), peroxidase (POD), ascorbate oxidase (AsA- POD), catalase (CAT), superoxide dismutase (SOD) and esterase (EST), were cho- sen to study their activities after the mites at different growth stages were incubated at a extremely high temperature of 42 ~C for a certain period of time up to 24 h. The activities were measured by spectrophotometric endpoint assay method. [Results] Enzyme activities in M. tanajoa were affected by the high temperature incubation. However, differences in enzyme activity changes were found among different protec- tive enzymes and among different growth stages of M. tanajoa. Activities of PPO, POD, AsA-POD and CAT were significantly increased in the larval mites and female adult mites of M. tanajoa. CAT activity was significantly decreased in protonymph and deutonymph of M. tanajoa. Activities of PPO, POD and AsA-POD in protonymph and deutonymph showed no obvious difference from the control. [Conclusion] The activity changes of some protective enzymes in M. tanajoa following high-temperature treatment are part of its anti-stress reaction mechanism. In mite protonymph and deutonymph, activities of PPO, POD and AsA-POD are similar to the untreated con- trol which may be associated with the thermostability of M. tanajoa. It is concluded that, the long-time stress of extreme temperature may result in the increase of the thermostability of mite individuals, the enhancement of the population thermal stability and subsequently lead to rapid expansion of the population.展开更多
Activities of several key enzymes of C-4 photosynthesis pathway and stable carbon isotope discrimination were investigated in flag leaves of a super high-yield hybrid rice (Oryza sativa L.) cv. Peiai 64S/E32 and a tra...Activities of several key enzymes of C-4 photosynthesis pathway and stable carbon isotope discrimination were investigated in flag leaves of a super high-yield hybrid rice (Oryza sativa L.) cv. Peiai 64S/E32 and a traditional hybrid rice cv. Shanyou 63 at different developing stages. Results show that the activity of PEP carboxylase (PEPCase) increased with age of flag leave; the activity of NADP-malate dehydrogenase (NADP-MDH) increased and reached to a peak value at grain filling stage (68-75 d after transplanting), then fell down; the activity of NADP-MDH in cv. Peiai 64S/E32 was much higher than that in cv. Shanyou 63. Before ripening stage (95 d after transplanting), NADP-malic enzyme activity rose gradually. The level of stable carbon isotope discrimination (Delta(13)C) in flag leaves and grains at different developing stages were similar and exhibited a comparative high value at ripening stage. The average Delta(13)C in leaf of cv. Peiai 64S/E32 during different developing stages was 0.43parts per thousand more than that in cv. Shanyou 63.展开更多
Soil properties, microbial communities and enzyme activities were studied in soil amended with replicase (RP)-transgenic or non-transgenic papaya under field conditions. Compared with non-transgenic papaya, signific...Soil properties, microbial communities and enzyme activities were studied in soil amended with replicase (RP)-transgenic or non-transgenic papaya under field conditions. Compared with non-transgenic papaya, significant differences (P〈0.05) were observed in total nitrogen in soils grown with transgenic papaya. There were also significant differences (P〈0.05) in the total number of colony forming units (CFUs) of bacteria, actinomycetes and fungi between soils amended with RP-transgenic plants and non-transgenic plants. Compared with non-transgenic papaya, the total CFUs of bacteria, actinomycetes and fungi in soil with transgenic papaya increased by 0.43-1.1, 0.21-0.80 and 0.46-0.73 times respectively. Significantly higher (P〈0.05) CFUs of bacteria, actinomycetes and fungi resistant to kanamycin (Km) were obtained in soils with RP-transgenic papaya than those with non-transgenic papaya in all concentrations of Km. Higher resistance quotients for Km' (kanamycin resistant) bacteria, actinomycetes and fungi were found in soil planted with RP-transgenic papaya, and the resistance quotients for Km' bacteria, actinomycetes and fungi in soils with transgenic papaya increased 1.6-4.46, 0.63-2.5 and 0.75-2.30 times. RP-transgenic papaya and non-transgenic papaya produced significantly different enzyme activities in arylsulfatase (5.4-5.9x), polyphenol oxidase (0.7-1.4x), invertase (0.5-0.79x), cellulase (0.23-0.35x) and phosphodiesterase (0.16-0.2x). The former three soil enzymes appeared to be more sensitive to the transgenic papaya than the others, and could be useful parameters in assessing the effects of transgenic papaya. Transgenic papaya could alter soil chemical properties, enzyme activities and microbial communities.展开更多
基金National Natural Science Foundation of China (52394195)Joint research program for ecological conservation and high-quality development of the Yellow River Basin (2022-YRUC-01-0304).
文摘The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were established on north and east sides of the opencast coal mining area, and samples were collected at 50 m, 550 m, and 1550 m from the pit on each transect. Control samples were collected from a grassland station 8 km from the opencast coal mining area that was not disturbed by mining. Four replicate soil samples were collected at each point on the four transects. Soil physicochemical properties and enzyme activities were determined, and correlations between soil properties and stoichiometric ratios and enzyme activities were explored using redundancy analysis. The increase in distance from mining did not significantly affect soil properties, although soil urease activity was significantly lower than that of the control area. Soil properties 1550 m from the mine pit were similar to those at the grassland control. In addition, soil total nitrogen had the greatest effect on soil stoichiometry, and soil total potassium had the greatest effect on soil enzyme activities. Coal dust from opencast mining might be the main factor affecting soil stoichiometry and enzyme activities. The results of this study provide direction for the next step in studying the influence of mining areas on soil properties and processes.
基金funded by the National Natural Science Foundation of China(31870435)the European Union's Marie Sklodowska-Curie Action Postdoctoral Fellowship(101061660)the China Scholarship Council(202106180060).
文摘The dominant plant litter plays a crucial role in carbon(C)and nutrients cycling as well as ecosystem functions maintenance on the Qinghai-Tibet Plateau(QTP).The impact of litter decomposition of dominant plants on edaphic parameters and grassland productivity has been extensively studied,while its decomposition processes and relevant mechanisms in this area remain poorly understood.We conducted a three-year litter decomposition experiment in the Gansu Gannan Grassland Ecosystem National Observation and Research Station,an alpine meadow ecosystem on the QTP,to investigate changes in litter enzyme activities and bacterial and fungal communities,and clarify how these critical factors regulated the decomposition of dominant plant Elymus nutans(E.nutans)litter.The results showed that cellulose and hemicellulose,which accounted for 95%of the initial lignocellulose content,were the main components in E.nutans litter decomposition.The litter enzyme activities ofβ-1,4-glucosidase(BG),β-1,4-xylosidase(BX),andβ-D-cellobiosidase(CBH)decreased with decomposition while acid phosphatase,leucine aminopeptidase,and phenol oxidase increased with decomposition.We found that both litter bacterial and fungal communities changed significantly with decomposition.Furthermore,bacterial communities shifted from copiotrophic-dominated to oligotrophic-dominated in the late stage of litter decomposition.Partial least squares path model revealed that the decomposition of E.nutans litter was mainly driven by bacterial communities and their secreted enzymes.Bacteroidota and Proteobacteria were important producers of enzymes BG,BX,and CBH,and their relative abundances were tightly positively related to the content of cellulose and hemicellulose,indicating that Bacteroidota and Proteobacteria are the main bacterial taxa of the decomposition of E.nutans litter.In conclusion,this study demonstrates that bacterial communities are the main driving forces behind the decomposition of E.nutans litter,highlighting the vital roles of bacterial communities in affecting the ecosystem functions of the QTP by regulating dominant plant litter decomposition.
基金the Key Project of the Natural Science Foundation of Ningxia Hui Autonomous Region,China(2022AAC02020)the Major Strategic Research Project of the Chinese Academy of Engineering and Local Cooperation(2021NXZD8)the Key Research and Development Plan Project of Ningxia Hui Autonomous Region,China(2022004129003).We are grateful to the editors and anonymous reviewers for their insightful comments and suggestions in improving this manuscript.
文摘It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of soil enzyme activities and SOC fractions(particulate organic carbon(POC)and mineral-associated organic carbon(MAOC))to five typical desert plant communities(Convolvulus tragacanthoides,Ephedra rhytidosperma,Stipa breviflora,Stipa tianschanica var.gobica,and Salsola laricifolia communities)in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia Hui Autonomous Region,China.We recorded the plant community information mainly including the plant coverage and herb and shrub species,and obtained the aboveground biomass and plant species diversity through sample surveys in late July 2023.Soil samples were also collected at depths of 0–10 cm(topsoil)and 10–20 cm(subsoil)to determine the soil physicochemical properties and enzyme activities.The results showed that the plant coverage and aboveground biomass of S.laricifolia community were significantly higher than those of C.tragacanthoides,S.breviflora,and S.tianschanica var.gobica communities(P<0.05).Soil enzyme activities varied among different plant communities.In the topsoil,the enzyme activities of alkaline phosphatase(ALP)andβ-1,4-glucosidas(βG)were significantly higher in E.rhytidosperma and S.tianschanica var.gobica communities than in other plant communities(P<0.05).The topsoil had higher POC and MAOC contents than the subsoil.Specifically,the content of POC in the topsoil was 18.17%–42.73%higher than that in the subsoil.The structural equation model(SEM)indicated that plant species diversity,soil pH,and soil water content(SWC)were the main factors influencing POC and MAOC.The soil pH inhibited the formation of POC and promoted the formation of MAOC.Conversely,SWC stimulated POC production and hindered MAOC formation.Our study aimed to gain insight into the effects of desert plant communities on soil enzyme activities and SOC fractions,as well as the drivers of SOC fractions in the proluvial fan in the eastern foothills of the Helan Mountain and other desert ecosystems.
文摘An in vitro study was conducted to investigate the impacts of microplastics on enzyme activities and soil bacteria. The study included four different treatments of microplastics including a control. Different levels of microplastics were applied to the soil ranging from 0% to 5%, to assess the impacts of microplastics on soil enzymes and subsequent soil bacteria. After 30 days of incubation, the soil samples were collected and growth parameters of bacteria were assessed. Activities of β-glucosidase, urease and dehydrogenase enzymes were also determined. Our results showed that the presence of microplastics in the soil significantly reduced bacterial population together with bacterial strains. The activities of β-glucosidase, urease and dehydrogenase enzymes were reduced significantly to approximately 32%, 40% and 50% in microplastics treated soils respectively. Concentration of microplastic has a role to play towards this direction;the higher the concentration of microplastic the greater is the impact on enzymes and soil bacteria. The present study on the microbial soil health vis-à-vis microplastic application indicates that the material can have negative effect on the soil bacterial population of and thus ultimately may jeopardize soil health and crop production.
文摘Curry leaves, scientifically termed Murraya koenigii, are renowned in South Asian cuisine for their flavor enhancement and potential health benefits, including antioxidative, anti-inflammatory, and antidiabetic properties. This study aimed to evaluate the impact of thermal processing methods on curry leaves by analysing Total Phenolic Content (TPC), Total Flavonoid Content (TFC), antioxidant activity, and metabolizing enzyme inhibition. Fresh curry leaves were subjected to thermal treatments: Oven-dried at 60˚C and Air-dried at 25˚C for 2 weeks. Extracts were prepared using Ethanol and water solvents. Results indicated that Air-dried leaves exhibited significantly higher TPC (5132.65 mg GAE/100 g) and TFC (243.13 mg CE/100 g) compared to Fresh and Oven-dried leaves. Antioxidant assays show that oven-dried curry leaves at 60˚C displayed higher results in NORS, FRAP, and TEAC assays compared to Fresh and Air-dried leaves. Ethanol extracts showed better extraction of bioactive compounds than aqueous extracts. Moreover, Lipase inhibition activity was notably high, indicating potential health benefits. This study provides valuable insights into the effects of processing methods on curry leaf extracts, emphasizing the importance of solvent selection for optimal extraction of bioactive compounds.
基金supported by National Natural Science Foundation of China(52208272,41706080 and 51702328)the Basic Scientific Fund for National Public Research Institutes of China(2020S02 and 2019Y03)+3 种基金the Basic Frontier Science Research Program of Chinese Academy of Sciences(ZDBS-LY-DQC025)the Young Elite Scientists Sponsorship Program by CAST(No.YESS20210201)the Strategic Leading Science&Technology Program of the Chinese Academy of Sciences(XDA13040403)the Key Research and Development Program of Shandong Province(Major Scientific and Technological Innovation Project)(2019JZZY020711).
文摘Since the catalytic activity of most nanozymes is still far lower than the corresponding natural enzymes,there is urgent need to discover novel highly efficient enzyme-like materials.In this work,Co_(3)V_(2)O_(8)with hollow hexagonal prismatic pencil structures were prepared as novel artificial enzyme mimics.They were then decorated by photo-depositing Ag nanoparticles(Ag NPs)on the surface to further improve its catalytic activities.The Ag NPs decorated Co_(3)V_(2)O_(8)(ACVPs)showed both excellent oxidase-and peroxidase-like catalytic activities.They can oxidize the colorless 3,3’,5,5’-tetramethylbenzidine rapidly to induce a blue change.The enhanced enzyme mimetic activities can be attributed to the surface plasma resonance(SPR)effect of Ag NPs as well as the synergistic catalytic effect between Ag NPs and Co_(3)V_(2)O_(8),accelerating electron transfer and promoting the catalytic process.ACVPs were applied in constructing a colorimetric sensor,validating the occurrence of the Fenton reaction,and disinfection,presenting favorable catalytic performance.The enzyme-like catalytic mechanism was studied,indicating the chief role of⋅O_(2)-radicals in the catalytic process.This work not only discovers a novel functional material with double enzyme mimetic activity but also provides a new insight into exploiting artificial enzyme mimics with highly efficient catalytic ability.
基金Supported by the grands from National Sugarcane Industry Technology System(CARS-20-3-5)Science and Technology Development Foundation of Guangxi Academy of Agricultural Science(GNK 2015JZ31 GNK 2013JZ13,200905Zji)~~
文摘[Objective] This study was conducted to expound the fertility improvement effect in continuous-cropping sugarcane field and provide reference for establishment of rational sugarcane fertilization system and improvement of soil quality in continuous-cropping sugarcane field. [Method] The soil in the experimental region is latosolic red soil which was planted with sugarcane for 11 years continuously, and 8 treatments including sole application of chemical fertilizers, sole application of organ- ic fertilizer, and combined application of organic fertilizer and chemical fertilizers were designed according to different fertilization measures. The effects of different fertilization treatments on soil microbial biomass, soil enzyme activities and related fertility factors were determined. [Result} Different fertilization treatments all showed soil microbial biomass N, C and P and activities of soil acid phosphatase, catalase, sucrase and urease higher than the CK. Soil microbial biomass N increased by 5.56%-67.13%, soil microbial biomass C increased by 4.01%-20.40%, and soil mi- crobial biomass P increased by 6.39%-67.02%. The activity of acid phosphatase was improved by 12.96%-35.19%, the activity of catalase was improved by 18.24% -78.93%, the activity of sucrase was improved by 3.00%-42.00%, and the activity of urease was improved by 1.21%-23.43%. However, the soil nutrients of different fertilization treatments increased non-significantly (P〉0.05). Soil microbial biomass N, C and P and activities of acid phosphatase, catalase and urease were in significant (P〈0.05) or very significant correlation (P〈0.01) with contents of soil rapidly available P, rapidly available K and total N. [Conclusion] The evaluation of improvement of soil fertility in continuous-cropping sugarcane field using soil microbial biomass and enzyme activities as indexes is more comprehensive and sensitive.
基金Supported by National Science and Technology Support Program(2008BADA4B06,2011BAD16B12)International Plant Nutrition Institute (IPNI) Project~~
文摘[Objective] This paper aimed at exploring the effects of different nitrogen application methods on the enzyme activities of leaves at ear position in late growth stage of maize. [Method] By pot experiment, the superoxide dismutase (SOD) activity, peroxidase (POD) activity, malonyl dialdehyde (MDA) content and soluble protein content were determined. [Result] At the filling stage and ripening stage, with the increasing of nitrogen application rate, MDA content gradually decreased, while SOD activity, POD activity and soluble protein content increased. MDA content with two topdressing nitrogen was lower than that with one top dressing nitrogen at the same nitrogen application rate, while SOD activity, POD activity and soluble protein content with two topdressing nitrogen were higher than that with one topdressing nitrogen. [Conclusion] Different nitrogen application methods have relatively significant effects on the MDA content, SOD activity, POD activity and soluble protein content, which is of certain directive significance for preventing spring maize prematuration.
文摘The changes of hydrogen peroxide (H2O2) metabolism and antioxidant enzyme activities in a hybrid poplar (Populus simonii xp. pyramidalis 'Opera 8277') in response to rnechanical damage (MD) and herbivore wounding (HW) were investigated to determine whether H2O2 could function as the secondary messenger in the signaling of systemic resistance. Results show that H2O2 was generated in wounded leaves through MD and HW treatments and systemically in unwounded leaves around the wounded leaves. The activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were also enhanced. However, the H2O2 accumulation and antioxidant enzyme activities were inhibited in MD leaves through the pretreatment with DPI (which is a specific inhibitor of NADPH oxidase). The results of this study suggest that H2O2 could be systemically induced by MD and HW treatments, and H2O2 metabolism was closely related to the change in SOD, APX and CAT activities. A high level of antioxidant enzymes could decrease membrane lipid peroxidation levels and effectively induce plant defense responses.
基金supported by the National Natural Science Foundation of China (No.90411020)Major State Basic Research Development Program of China (973 Program)(2002CB412502).
文摘A study was conducted to determine the effects of elevated CO2 on soil N process at Changbai Mountain in Jilin Province, northeastern China (42°24"N, 128°06"E, and 738 m elevation). A randomized complete block design of ambient and elevated CO2 was established in an open-top chamber facility in the spring of 1999. Changpai Scotch pine (Pinus sylvestris var. sylvestriformis seeds were sowed in May, 1999 and CO2 fumigation treatments began after seeds germination. In each year, the exposure started at the end of April and stopped at the end of October. Soil samples were collected in June and August 2006 and in June 2007, and soil nitrifying, denitrifying and N2-fixing enzyme activities were measured. Results show that soil nitrifying enzyme activities (NEA) in the 5-10 cm soil layer were significantly increased at elevated CO2 by 30.3% in June 2006, by 30.9% in August 2006 and by 11.3% in June 2007. Soil denitrifying enzyme activities (DEA) were significantly decreased by elevated CO2 treatment in June 2006 (P 〈 0.012) and August 2006 (P 〈 0.005) samplings in our study; no significant difference was detected in June 2007, and no significant changes in N2-fixing enzyme activity were found. This study suggests that elevated CO2 can alter soil nitrifying enzyme and denitrifying enzyme activities.
基金Supported by Scientific and Technological Project of Heilongjiang Province(GC05B205)Scientific and Technological Project of Heilongjiang Land Reclamation Bureau(HNKXV-03-04-06A)~~
文摘[Objective] The aim of the study was to determine whether phytotoxicity of TeA against Echinochloa crus-galli leaves was correlated with oxidative stress caused by generation of reactive oxygen and the changes of antioxidant enzymes activity.[Method] The changes of malondialdehyde(MDA)content,hydrogen peroxide(H2O2),and activities of superoxide dismutase(SOD),glutathione reductase(GR)and catalase(CAT)were studied by leaf segment method in vitro.[Result] After the treatment of 500 μmol/L TeA,the content of MDA and H2O2 increased by 247.86% and 67.00%,respectively,indicating that the accumulation of MDA and H2O2 in E.crus-galli leaves was due to the reactive oxygen burst induced by TeA.TeA induced a significant increase in activities of SOD,GR and CAT.At 500 μmol/L TeA,activities of SOD,GR and CAT increased more than one fold compared with the control.[Conclusion] TeA could not only cause oxidative stress in leaves of E.crus-galli through the induction of reactive oxygen,but also induce the increasing of antioxidant enzyme activity.
基金Supported by Liaoning Natural Science Foundation Project(20062124)~~
文摘The paper was to explore the effect of trace and secondary elements on scab of cucurbits ( Cladosporium cucumerinum) and their effects on enzyme activities of cucumber plants. [ Method ] Indoor antifungd experiment and pot test was carried out to study the control effect of different trace and secondary dements on scab of cucu.rbits; after trace and secondary element compounds were sprayed for 7 d, the content of soluble protein and malondialdehyde (MDA) and the activities of peroxidase (POD) and superoxide dismutase (SOD) of cucumber leaves during seedling stage were simultaneously detected. [ Result] The inhibi- tion effects on scab of cucurbits were found in the three trace and secondary dements, especially for the CaC12 (66.9%), and about 54.6% and 24.1% for ZnSO4 and H3 BO3 , respectively. When cucumber plants were infected by scab of cuea.rbits, the contents of MDA for all treatments were significantly decreased in cucum- ber leaves after spraying the three trace and secondary elements compared with control. The contents of soluble protein in cucumber seedling were increased by Zn- SO4 and H3 BO3 application, while the contents of POD and SOD were increased on ZnSO4 and CaCI2 treatments. The defense system of cucumber was induced and strengthened by application of the three trace and secondary elements. [ Conclusion ] The results provided the theoretical basis for practical application and research on resistance mechanism of using trace and secondary dements to control scab of eueurbits.
文摘Due to its strong and effective insecticidal properties, transgenic Bt+CpTI cotton has witnessed an expanding planting area in recent years, and the impact of its cultivation on soil ecosystem becomes an important part of environmental risk assessment. Using transgenic Bt+CpTI cotton sGK321 and its parental homologous conventional cotton Shiyuan 321 as the study objects, a comparative analysis was conducted on the changes in enzyme activities (urease, alkaline phosphatase, and catalase) of the rhizosphere soil and changes in the number of culturable microor-ganisms (bacteria, fungi, and actinomycetes) at different growth stages (seedling stage, budding stage, flower and bol stage, and bol opening stage) of sGK321 and Shiyuan 321 under the condition of 13 years field plantings. The results showed that, the populations of bacteria, fungi, and actinomycete and the soil enzyme activi-ties of urease, alkaline phosphatase and catalase had a similar variation trend along with the cotton growing process for transgenic cotton and conventional cotton. Some occasional and inconsistent effects on soil enzyme activities and soil fungi composi-tion in the rhizosphere soil of transgenic Bt+CpTI cotton were found at the seedling stage, budding stage, flower and bol stage as compared with that of conventional cotton. The amount of bacteria and actinomycetes were not significantly different during a certain stage; however, the activities of urease, catalase, alkaline phos-phatase, also with the number of fungi were significantly different, e.g. the urease activities at seedling stage, the alkaline phosphatase at seedling and budding stages, and the soil culturable fungi at flower and bol stage were less than that of conven-tional cotton, while the soil alkaline phosphatase activities at flower and bol stage were higher. Cluster analysis showed that soil enzyme activities and microbial popu-lation changed mainly along the growth processes, suffering little from the planting of transgenic Bt+CpTI cotton.
基金Supported by National Natural Science Foundation of China(3044003230771311)+1 种基金Natural Science Foundation of Chongqing City(cstc2009BB1328)Project of Nan'an District Science and Technology Commission of Chongqing City(2008)~~
文摘[Objective] This study aimed to determine activities of antioxidant enzymes during gland morphogenesis in cotton, thoroughly explore physiological changes of cotton and provide a scientific basis for the cultivation of excellent cotton varieties. [Method] Based on determination of gossypol contents and antioxidant enzymes ac- tivities during gland morphogenesis in three cotton varieties (Chuanmian2802, Xiang- mian18 and XianwuN5), metabolism of gossypol and morphogenesis of gland in cot- ton were explored. [Result] After gland morphogenesis, the content of gossypol in Chuanmian2802 was gradually reduced in the early period of seed germination, which slowly increased since the 5th d after germination; however, during the seed germination period, the content of gossypol in Xiangmian18 had a slowly increasing trend and was gradually close to the content of gossypol in Chuanmian2802. The results showed that activities of SOD, POD and CAT increased in seed germination, which was contributive to remove the superoxide radicals, decrease the peroxide lev- el, reduce damages to the membrane, enhance the body's resistance to lipid oxida- tion and increase resistance ability to stress. [Conclusion] This study laid the scientif- ic foundation for understanding the characteristics of gland morphogenesis in cotton and cotton cultivation by using gland traits.
基金Supported by " 948 " program of China (2006-4-66 )the Fundamental Research Funds for Guangxi Forestry Research Institute(Forestry Science 200902)~~
文摘[Objective] The aim was to provide theoretical basis for speeding up the popularization of Eucalyptus dunnii.[Method] Differences in phenolic compounds and related enzyme activities between hard rooting E.dunnii and easily rooting E.urophylla×E.grandis clone (U9) were studied.[Result] There were significant differences in contents of phenolic compounds and activities of indole acetic acid oxidase (IAAO),andperoxidase (POD) and polyphenol oxidase (PPO) between the two Eucalyptus species.Compared with U9,contents of phenolic compounds and POD activity of E.dunnii cuttings were relatively high,while activities of IAAO and PPO were relatively low.[Conclusion] More phenolic compounds and the differences in related enzyme activities might be the major factors to result in hard rooting of E.dunnii cuttings.
基金Supported by"11th Five-Year Plan"National Key Technology Research and Development Program(2006BAD25B08)~~
文摘[Objective] The aim was to study the effects of combined of manure and fertilizer on the content of nutrients in purplish soil as well as release dynamics of enzyme activities.[Method] The effects of manure and fertilizer application on the content of AOM,NH+4-N and NO-3-N in soil as well as release dynamics of enzyme activities were studied by means of simulation culturing.[Result] In the treatments of combined application of simulation culture experiment,the content of active organic matters,NH+4-N,NO-3-N and soil enzyme activities changed dynamically,which showed a shape of inverted "S" with two or more peaks.Compared with the treatment of fertilization,their peaks were relatively flat and occurred relatively late,while the treatment of fertilization had only one but the highest peak.The content of active organic matter came to top around 10 d in the order of cow5fertilizer5pig5fertilizer5cow manurepig manurefertilizer Ⅰfertilizer Ⅱ;the activity of urease came to top around 10 d in all treatments and in the order of pig manurecow5fertilizer5cow manurefertilizer Ⅰfertilizer Ⅱpig5fertilizer5.The activity of saccharase was in the order of pig5fertilizer5pig manurecow5fertilizer5cow manureCKfertilizer Ⅱfertilizer Ⅰ.[Conclusion] The study could provide the theoretical basis for reasonable application of manure and fertilizer.
基金Supported by the China Postdoctoral Science Foundation(2012M511728)~~
文摘[Objective] In order to explore the mechanism of combined inoculation mi- croorganisms in improving coastal saline soil property and plant growth. [Method] The pot experiment was used to assess the effects of different inoculated proportion of arbuscular mycorrhizal fungi (AMF) and Phosphate-sotubilizing fungus. Apophysomyces spartina, on growth, chlorophyll contents, P-uptake of castor bean (Ricinus communis L.) and rhizosphere soil pH values, available P concentrations, enzyme activities. [Result] The mixed inoculation of AMF and A. spartina significantly reduced soil pH value, increased soil available phosphorous contents, improved the activities of soil invertase, urease, neutral phosphatase, and alkaline phosphatase. Chlorophyll contents, P-uptake, and plant dry weight of castor bean were also in- creased. The optimal proportion of the number of AMF spores to A. spartina colonies was 28.56:11.5×10^5, which had positive effects on saline soil and could stimulate plant growth under greenhouse condition. [Conclusion] Appropriate propor- tion of AMF and A. spartina had the potential to enhance coastal saline soil prop- erty and promote castor bean growth.
基金Supported by Special Fund for Cassava Technology System Fund (CARS-12-hncq)the Central-level Public Welfare Research Institutes for Basic R & D Operations (No.2011h-zs1J014,No.2009hzs1J013)+1 种基金Agricultural Public Welfare Industry-specific (200903034-5)Science and Technology Program Project of Hainan Province (ZDXM20100022,ZDXM20110032)~~
文摘[Objective] Mononychellus tanajoa is a mite speices recently invaded into China in 2008. Temperature is one of the most important ecological factors affecting the growth and reproduction of M. tanajoa. The objective of the current study was to reveal the effects of high temperature incubation on the activities of some protective enzymes in M. tanajoa at different growth stages. The results would contribute to the understanding of the adaptable distribution of M. tanajoa after its invasion into China, the mechanisms in its invasion, diffusion and ecological adaptation, and the monitor- ing, early warning and effective prevention of its damage. [Method] Six protective enzymes, Le. polyphenol oxidase (PPO), peroxidase (POD), ascorbate oxidase (AsA- POD), catalase (CAT), superoxide dismutase (SOD) and esterase (EST), were cho- sen to study their activities after the mites at different growth stages were incubated at a extremely high temperature of 42 ~C for a certain period of time up to 24 h. The activities were measured by spectrophotometric endpoint assay method. [Results] Enzyme activities in M. tanajoa were affected by the high temperature incubation. However, differences in enzyme activity changes were found among different protec- tive enzymes and among different growth stages of M. tanajoa. Activities of PPO, POD, AsA-POD and CAT were significantly increased in the larval mites and female adult mites of M. tanajoa. CAT activity was significantly decreased in protonymph and deutonymph of M. tanajoa. Activities of PPO, POD and AsA-POD in protonymph and deutonymph showed no obvious difference from the control. [Conclusion] The activity changes of some protective enzymes in M. tanajoa following high-temperature treatment are part of its anti-stress reaction mechanism. In mite protonymph and deutonymph, activities of PPO, POD and AsA-POD are similar to the untreated con- trol which may be associated with the thermostability of M. tanajoa. It is concluded that, the long-time stress of extreme temperature may result in the increase of the thermostability of mite individuals, the enhancement of the population thermal stability and subsequently lead to rapid expansion of the population.
文摘Activities of several key enzymes of C-4 photosynthesis pathway and stable carbon isotope discrimination were investigated in flag leaves of a super high-yield hybrid rice (Oryza sativa L.) cv. Peiai 64S/E32 and a traditional hybrid rice cv. Shanyou 63 at different developing stages. Results show that the activity of PEP carboxylase (PEPCase) increased with age of flag leave; the activity of NADP-malate dehydrogenase (NADP-MDH) increased and reached to a peak value at grain filling stage (68-75 d after transplanting), then fell down; the activity of NADP-MDH in cv. Peiai 64S/E32 was much higher than that in cv. Shanyou 63. Before ripening stage (95 d after transplanting), NADP-malic enzyme activity rose gradually. The level of stable carbon isotope discrimination (Delta(13)C) in flag leaves and grains at different developing stages were similar and exhibited a comparative high value at ripening stage. The average Delta(13)C in leaf of cv. Peiai 64S/E32 during different developing stages was 0.43parts per thousand more than that in cv. Shanyou 63.
文摘Soil properties, microbial communities and enzyme activities were studied in soil amended with replicase (RP)-transgenic or non-transgenic papaya under field conditions. Compared with non-transgenic papaya, significant differences (P〈0.05) were observed in total nitrogen in soils grown with transgenic papaya. There were also significant differences (P〈0.05) in the total number of colony forming units (CFUs) of bacteria, actinomycetes and fungi between soils amended with RP-transgenic plants and non-transgenic plants. Compared with non-transgenic papaya, the total CFUs of bacteria, actinomycetes and fungi in soil with transgenic papaya increased by 0.43-1.1, 0.21-0.80 and 0.46-0.73 times respectively. Significantly higher (P〈0.05) CFUs of bacteria, actinomycetes and fungi resistant to kanamycin (Km) were obtained in soils with RP-transgenic papaya than those with non-transgenic papaya in all concentrations of Km. Higher resistance quotients for Km' (kanamycin resistant) bacteria, actinomycetes and fungi were found in soil planted with RP-transgenic papaya, and the resistance quotients for Km' bacteria, actinomycetes and fungi in soils with transgenic papaya increased 1.6-4.46, 0.63-2.5 and 0.75-2.30 times. RP-transgenic papaya and non-transgenic papaya produced significantly different enzyme activities in arylsulfatase (5.4-5.9x), polyphenol oxidase (0.7-1.4x), invertase (0.5-0.79x), cellulase (0.23-0.35x) and phosphodiesterase (0.16-0.2x). The former three soil enzymes appeared to be more sensitive to the transgenic papaya than the others, and could be useful parameters in assessing the effects of transgenic papaya. Transgenic papaya could alter soil chemical properties, enzyme activities and microbial communities.