期刊文献+
共找到380篇文章
< 1 2 19 >
每页显示 20 50 100
Effect of ^(12)C^(6+) Ions Beam Irradiation on Seed Germination and Enzymes Activity in Seedlings of Sweet Sorghum 被引量:10
1
作者 冯亮英 董喜存 +7 位作者 李文建 马晓琪 马爽 余丽霞 李岩 刘清芳 何金玉 曲颖 《Agricultural Science & Technology》 CAS 2009年第5期22-25,共4页
[ Objective] The aim was to study the effect of 12C6 + ions beam irradiation to two varieties of sweet sorghum on seed germination and some enzymes activity in seedlings with different doses, and provided a theoretic... [ Objective] The aim was to study the effect of 12C6 + ions beam irradiation to two varieties of sweet sorghum on seed germination and some enzymes activity in seedlings with different doses, and provided a theoretical foundation for sweet sorghum breeding. [ Method] After germination, the germination potential, germination fraction and enzyme activity were detected, respectively. [ Result] The results showed that with the dose increased, the germination potential of sweet sorghum increased first and then decreased, while their germination fraction presented "shoulder like shape" ; the activity of LDH, SOD, CAT and GSH-Px increased first and then decreased with doses, they presented slight differences among different enzymes. [ Conclusion] Low dose radiation could accelerate germination of sweet sorghum seeds and enzyme activity could remain at a relatively high level. Enzyme activity decreased with high doses and the growth of sweet sorghum was inhibited. 展开更多
关键词 Heavy ions Sweet sorghum Germination potential Seedling rate Enzyme activity
下载PDF
Effects of Cinnamon Acid on Respiratory Rate and Its Related Enzymes Activity in Roots of Seedlings of Malus hupehensis Rehd. 被引量:9
2
作者 GAO Xiang-bin,ZHAO Feng-xia,SHEN Xiang,HU Yan-li,HAO Yun-hong,YANG Shu-quan,SU Li-tao and MAO Zhi-quan State Key Laboratory of Crop Biology/College of Horticultural Science and Engineering,Shandong Agricultural University,Tai’an 271018,P.R.China 《Agricultural Sciences in China》 CSCD 2010年第6期833-839,共7页
This paper studied the effects of cinnamon acid treatments on the respiratory rate and related enzymes activity in the seedling roots of Malus hupehensis Rehd.It would provide information for understanding the mechani... This paper studied the effects of cinnamon acid treatments on the respiratory rate and related enzymes activity in the seedling roots of Malus hupehensis Rehd.It would provide information for understanding the mechanisms of inhibition damage caused by continuous cultivation of apple tree.20 mL of solution containing different concentrations of cinnamon acid was added into container with the tested seedlings.After treatment,the samples were taken periodically and the respiratory rates were measured by OXY-LAB oxygen electrodes under 25°C stable temperature and then the activities of related enzymes were measured.The rates of total respiration and other 2 pathways [tricarboxylic acid cycle (TCA) and pentose phosphate pathway (PPP)] appeared initially an increasing treads and late (on the 3rd d) began to decline.However,they again appeared an increase trend at the end period,on the contrast,the respiratory rate of embden-meyer- hot-parnas (EMP) pathway appeared a stead decline tread but it had a recover on the last day.The respiratory rate of total and 3 pathways were decreased under 125 mg kg-1 (soil).The dynamic trends of the enzymes activities of pyrophosphate-dependent phosphofructokinase (PFK),glucose-6-phosphate dehydrogenase (G-6-PDH) and malate dehydrogenase (MDH) showed similarly.In conclusion,treatments of certain concentration of cinnamon acid would inhibit the respiratory rate and related enzymes activity of roots of M.hupehensis Rehd.And the inhibition degrees were positively related with concentration of cinnamon acid treatments. 展开更多
关键词 cinnamon acid Malus hupehensis Rehd. ROOTS respiratory rate enzymes activity
下载PDF
Changes in enzymes activity, substrate utilization pattern and diversity of soil microbial communities under cadmium pollution 被引量:11
3
作者 Muhammad Akmal WANG Hai-zhen +2 位作者 WU Jian-jun XU Jian-ming XU De-fu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第5期802-807,共6页
Heavy metal pollution has received increasing attention in recent years mainly because of the public awareness of environmental issues. In this study we have evaluated the effect of cadmium (Cd) on enzymes activity,... Heavy metal pollution has received increasing attention in recent years mainly because of the public awareness of environmental issues. In this study we have evaluated the effect of cadmium (Cd) on enzymes activity, substrate utilization pattern and diversity of microbial communities in soil spiked with 0, 20, 40, 60, 80, and 100 mg/kg Cd, during 60 d of incubation at 25℃. Enzyme activities determined at 0, 15, 30, 45, and 60 d after heavy metal application(DAA) showed marked declines for various Cd treatments, and up to 60 DAA, 100 mg/kg Cd resulted in 50.1%, 47.4%, and 39.8% decreases in soil urease, acid phosphatase and dehydrogenase activities, respectively to control. At 60 DAA, substrate utilization pattern of soil microbial communities determined by inoculating Biolog ECO plates indicated that Cd addition had markedly inhibited the functional activity of soil microbial communities and multivariate analysis of sole carbon source utilization showed significantly different utilization patterns for 80 and 100 mg/kg Cd treatments. The structural diversity of soil microbial communities assessed by PCR-DGGE method at 60 DAA, illustrated that DGGE patterns in soil simplified with increasing Cd concentration, and clustering of DGGE profiles for various Cd treatments revealed that they had more than 50% difference with that of control. 展开更多
关键词 enzyme activity microbial community SOIL CADMIUM
下载PDF
Dietary manganese supplementation inhibits abdominal fat deposition possibly by regulating gene expression and enzyme activity involved in lipid metabolism in the abdominal fat of broilers
4
作者 Xiaoyan Cui Ke Yang +6 位作者 Weiyun Zhang Liyang Zhang Ding Li Wei Wu Yun Hu Tingting Li Xugang Luo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第12期4161-4171,共11页
Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.Several studies found that dietary supplemental manganese(Mn)could effectively reduce the abdominal fat deposition of broile... Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.Several studies found that dietary supplemental manganese(Mn)could effectively reduce the abdominal fat deposition of broilers,but the underlying mechanisms remain unclear.The present study aimed to investigate the effect of dietary supplementation with the inorganic or organic Mn on abdominal fat deposition,and enzyme activity and gene expression involved in lipid metabolism in the abdominal fat of male or female broilers.A total of 4201-d-old AA broilers(half males and half females)were randomly allotted by body weight and gender to 1 of 6 treatments with 10 replicates cages of 7 chicks per cage in a completely randomized design involving a 3(dietary Mn addition)×2(gender)factorial arrangement.Male or female broilers were fed with the Mn-unsupplemented basal diets containing 17.52 mg Mn kg^(-1)(d 1-21)and 15.62 mg Mn kg^(-1)(d 22-42)by analysis or the basal diets supplemented with 110 mg Mn kg^(-1)(d 1-21)and 80 mg Mn kg^(-1)(d 22-42)as either the Mn sulfate or the Mn proteinate with moderate chelation strength(Mn-Prot M)for 42 d.The results showed that the interaction between dietary Mn addition and gender had no impact(P>0.05)on any of the measured parameters;abdominal fat percentage of broilers was decreased(P<0.003)by Mn addition;Mn addition increased(P<0.004)adipose triglyceride lipase(ATGL)activity,while Mn-Prot M decreased(P<0.002)the fatty acid synthase(FAS)activity in the abdominal fat of broilers compared to the control;Mn addition decreased(P<0.009)diacylglycerol acyltransferase 2(DGAT2)mRNA expression level and peroxisome proliferator-activated receptor γ(PPARγ)mRNA and protein expression levels,but up-regulated(P<0.05)the ATGL mRNA and protein expression levels in the abdominal fat of broilers.It was concluded that dietary supplementation with Mn inhibited the abdominal fat deposition of broilers possibly via decreasing the expression of PPARγand DGAT2 as well as increasing the expression and activity of ATGL in the abdominal fat of broilers,and Mn-Prot M was more effective in inhibiting the FAS acitivity. 展开更多
关键词 MANGANESE abdominal fat BROILER gene expression enzyme activity
下载PDF
Response of Bacterial Community and Enzyme Activity of Greenhouse Tomato under Different Irrigation Systems
5
作者 Haijian Yang Mingzhi Zhang +1 位作者 Na Xiao Yuan Li 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第7期1543-1568,共26页
The micro-sprinkler irrigation mulched(MSM)has been suggested as a novel water-saving approach in con-trolled environment agriculture.However,the effects of microbial community structure and enzyme activity in the rhi... The micro-sprinkler irrigation mulched(MSM)has been suggested as a novel water-saving approach in con-trolled environment agriculture.However,the effects of microbial community structure and enzyme activity in the rhizosphere soil on crop growth under MSM remain unclear.This study conducted a randomized experimen-tal design using greenhouse tomatoes to investigate changes in bacterial community structure and enzyme activity in rhizosphere soil under different irrigation frequencies(F)and amounts(I)of MSM.Thefindings revealed that with the increase of F or I,The total count of soil bacteria in tomatoesfirst rose and then fell in terms of Opera-tional Taxonomic Units(OTUs)classification.Compared to other F,the most abundance of nitrogen and phos-phorus metabolism genes and enzyme activities were observed with a 5-day F.Moreover,the diversity of soil bacterial community structure initially rose before eventually declining with the increase of the I.Applying 1.00 Epan(cumulative evaporation of a 20 cm standard pan)under MSM helped boost the abundance of nitrogen and phosphorus metabolism functional genes in soil bacteria,ensuring higher enzyme activities related to nitro-gen,carbon,and phosphorus metabolism in the rhizosphere soil of tomatoes.Tomatoes’yield initially rose before eventually declining with the increase in F or I,whereas I had a more significant effect on yield.A 1.00%increase in I yielded a minimum of 39.24%increase in tomato yield.The study showed a positive correlation between soil bacterial community,soil enzyme activity,and greenhouse tomato yield under MSM.Considering the results comprehensively,the combined irrigation mode of F of 5 d and I of 1.00 Epan was recommended for greenhouse tomatoes under MSM.This conclusion provides theoretical support for water-saving practices and yield improve-ment in facility agriculture,especially tomato cultivation. 展开更多
关键词 Greenhouse tomato YIELD bacterial community enzyme activity MODEL
下载PDF
The Identification of Phenylalanine Ammonia-Lyase(PAL)Genes from Pinus yunnanensis and an Analysis of Enzyme Activity in vitro
6
作者 Dejin Mu Lin Chen +6 位作者 Heze Wang Zhaoliu Hu Sihui Chen Shi Chen Nianhui Cai Yulan Xu Junrong Tang 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期503-516,共14页
Phenylalanine ammonia lyase(PAL)is the rate-limiting and pivotal enzyme of the general phenylpropanoid path-way,but few reports have been found on PAL genes in Pinus yunnanensis.In the present study,three PAL genes we... Phenylalanine ammonia lyase(PAL)is the rate-limiting and pivotal enzyme of the general phenylpropanoid path-way,but few reports have been found on PAL genes in Pinus yunnanensis.In the present study,three PAL genes were cloned and identified from P.yunnanensis seedlings for thefirst time,namely,PyPAL-1,PyPAL-2,and PyPAL-3.Our results indicated that the open-reading frames of PyPAL genes were 2184,2157,and 2385 bp.Phylogenetic tree analysis revealed that PyPALs have high homology with other known PAL genes in other plants.In vitro enzymatic analysis showed that all three PyPAL recombinant proteins could catalyze the deamination of L-phenylalanine to form trans-cinnamic acid,but only PAL1 and PAL2 can catalyze the conversion of L-tyrosine toρ-coumaric acid.Three PyPAL genes were expressed in different tissues in 1-year-old P.yunnanensis,and such genes had different expression patterns.This study lays a foundation for further understanding of the biosynthesis of secondary metabolites in P.yunnanensis. 展开更多
关键词 Pinus yunnanensis phenylalanine ammonia-lyase enzyme activity in vitro functional analysis secondary metabolites
下载PDF
Advances in Activity of Related Enzymes during Graft Healing Process of Citrus Paradisi Macf 被引量:1
7
作者 严毅 高柱 +1 位作者 何承忠 李贤忠 《Agricultural Science & Technology》 CAS 2011年第10期1472-1476,共5页
The distribution and ecological characters of grapefruit were analyzed mainly,and the research trends of stock and scion selection for grafting,the healing-anatomy process and enzymology were summarized systematically... The distribution and ecological characters of grapefruit were analyzed mainly,and the research trends of stock and scion selection for grafting,the healing-anatomy process and enzymology were summarized systematically.The results indicated that the range of stock and scion apolegamy decreased through the application of molecular technique.But the study on stock variety and scion selection was still in need of expanding and the key enzyme played a vital role in the healing of the stock and scion,which provided a chance for the regulation and control of healing force by hormones and also provided a theoretical basis for the regulation of gene. 展开更多
关键词 GRAPEFRUIT Graft healing Enzyme activity
下载PDF
Effects of Increased Night Temperature on Cellulose Synthesis and the Activity of Sucrose Metabolism Enzymes in Cotton Fiber 被引量:3
8
作者 TIAN Jing-shan HU Yuan-yuan +5 位作者 GAN Xiu-xia ZHANG Ya-li HU Xiao-bing GOU Ling LUO Hong-hai ZHANG Wang-feng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第6期979-988,共10页
Temperature is one of the key factors that influence cotton fiber synthesis at the late growth stage of cotton. In this paper, using two early-maturing cotton varieties as experimental materials, night temperature inc... Temperature is one of the key factors that influence cotton fiber synthesis at the late growth stage of cotton. In this paper, using two early-maturing cotton varieties as experimental materials, night temperature increase was stimulated in the field using far-infrared quartz tubes set in semi-mobile incubators and compared with the normal night temperatures (control) in order to investigate the effects of night temperature on the cotton fiber cellulose synthesis during secondary wall thickening. The results showed that the activity of sucrose synthase (SuSy) and sucrose phosphate synthase (SPS) quickly increased and remained constant during the development of cotton fiber, while the activity of acid invertase (AI) and alkaline invertase (NI) decreased, increased night temperatures prompted the rapid transformation of sugar, and all the available sucrose fully converted into cellulose. With night temperature increasing treatment, an increase in SuSy activity and concentration of sucrose indicate more sucrose converted into UDPG (uridin diphosphate-glucose) during the early and late stages of cotton fiber development. Furthermore, SPS activity and the increased concentration of fructose accelerated fructose degradation and reduced the inhibition of fructose to SuSy; maintaining higher value of allocation proportion of invertase and sucrose during the early development stages of cotton fiber, which was propitious to supply a greater carbon source and energy for cellulose synthesis. Therefore, the minimum temperature in the nightime was a major factor correlated with the activity of sucrose metabolism enzymes in cotton fiber. Consequently, soluble sugar transformation and cellulose accumulation were closely associated with the minimum night temperature. 展开更多
关键词 cotton fiber night temperature sucrose metabolism enzyme activity
下载PDF
Higher dietary protein increases growth performance,anti-oxidative enzymes activity and transcription of heat shock protein 70 in the juvenile sea urchin(Strongylocentrotus intermedius)under a heat stress 被引量:2
9
作者 Rantao Zuo Shouquan Hou +4 位作者 Fanxiu Wu Jian Song Weijie Zhang Chong Zhao Yaqing Chang 《Aquaculture and Fisheries》 2017年第1期18-23,共6页
This study was conducted to investigate the effect of dietary protein concentration(12%,18%,24%,30% and 36%)on the growth performance,activity of anti-oxidative enzymes and heat shock protein 70(HSP70)transcription in... This study was conducted to investigate the effect of dietary protein concentration(12%,18%,24%,30% and 36%)on the growth performance,activity of anti-oxidative enzymes and heat shock protein 70(HSP70)transcription in the sea urchin(Strongylocentrotus intermedius)under a heat stress.After 112 days of feeding trial the sea urchins were heat stressed(26C)and the coelomic fluid and intestine sampled at time 0 and 15 min,2 h and 6 h.The results showed that an increase in dietary protein(12%-24%),significantly increased(p<0.05)the sea urchin weight gain rate(WGR).As dietary protein increased(from 18% to 36%),the gonadosomatic index(GI)of juvenile sea urchins also significantly increased(p<0.05)from 18.0%to 22.6%.Superoxide dismutase(SOD)activity increased with dietary protein increase(12%-30%)and the enzyme activity was significantly higher(p<0.05)in the coelomic fluid of sea urchins that were fed with 30% diets when compared to 12% and 36% protein diets at all time points after the heat stress.Catalase(CAT)activity showed a similar tendency with the increase in dietary protein concentration at time 0 and 15 min after the heat stress(p<0.05).Transcription of HSP70 in the intestine also showed a similar trend to SOD and was highest in the animals that were fed with 30% protein diets(p<0.05).Our results suggest that 24% protein diets could meet the requirements for growth performance but a 30% protein diet resulted in improved gonad development and anti-heat stress capacity in this sea urchin species. 展开更多
关键词 Dietary protein Growth performance Gonadal development Enzyme activity TRANSCRIPTION Sea urchin
原文传递
Changes in the activities of key enzymes and the abundance of functional genes involved in nitrogen transformation in rice rhizosphere soil under different aerated conditions 被引量:3
10
作者 XU Chun-mei XIAO De-shun +4 位作者 CHEN Song CHU Guang LIU Yuan-hui ZHANG Xiu-fu WANG Dan-ying 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第3期923-934,共12页
Soil microorganisms play important roles in nitrogen transformation. The aim of this study was to characterize changes in the activity of nitrogen transformation enzymes and the abundance of nitrogen function genes in... Soil microorganisms play important roles in nitrogen transformation. The aim of this study was to characterize changes in the activity of nitrogen transformation enzymes and the abundance of nitrogen function genes in rhizosphere soil aerated using three different methods(continuous flooding(CF), continuous flooding and aeration(CFA), and alternate wetting and drying(AWD)). The abundances of amoA ammonia-oxidizing archaea(AOA) and ammonia-oxidizing bacteria(AOB), nirS, nirK, and nifH genes, and the activities of urease, protease, ammonia oxidase, nitrate reductase, and nitrite reductase were measured at the tillering(S1), heading(S2), and ripening(S3) stages. We analyzed the relationships of the aforementioned microbial activity indices, in addition to soil microbial biomass carbon(MBC) and soil microbial biomass nitrogen(MBN), with the concentration of soil nitrate and ammonium nitrogen. The abundance of nitrogen function genes and the activities of nitrogen invertase in rice rhizosphere soil were higher at S2 compared with S1 and S3 in all treatments. AWD and CFA increased the abundance of amoA and nifH genes, and the activities of urease, protease, and ammonia oxidase, and decreased the abundance of nirS and nirK genes and the activities of nitrate reductase and nitrite reductase, with the effect of AWD being particularly strong. During the entire growth period, the mean abundances of the AOA amoA, AOB amoA, and nifH genes were 2.9, 5.8, and 3.0 higher in the AWD treatment than in the CF treatment, respectively, and the activities of urease, protease, and ammonia oxidase were 1.1, 0.5, and 0.7 higher in the AWD treatment than in the CF treatment, respectively. The abundances of the nirS and nirK genes, and the activities of nitrate reductase and nitrite reductase were 73.6, 84.8, 10.3 and 36.5% lower in the AWD treatment than in the CF treatment, respectively. The abundances of the AOA amoA, AOB amoA, and nifH genes were significantly and positively correlated with the activities of urease, protease, and ammonia oxidase, and the abundances of the nirS and nirK genes were significantly positively correlated with the activities of nitrate reductase. All the above indicators were positively correlated with soil MBC and MBN. In sum, microbial activity related to nitrogen transformation in rice rhizosphere soil was highest at S2. Aeration can effectively increase the activity of most nitrogen-converting microorganisms and MBN, and thus promote soil nitrogen transformation. 展开更多
关键词 rhizosphere aeration gene abundance enzyme activities soil microbial biomass carbon soil microbial nitrogen
下载PDF
Deadwood affects the soil organic matter fractions and enzyme activity of soils in altitude gradient of temperate forests 被引量:2
11
作者 Ewa Błońska Wojciech Prazuch Jarosław Lasota 《Forest Ecosystems》 SCIE CSCD 2023年第3期316-327,共12页
The main objective of our study has been to determine the role of deadwood in the shaping of the amount of soil organic matter fractions in mountain forest soils.For this purpose,a climosequence approach comprising no... The main objective of our study has been to determine the role of deadwood in the shaping of the amount of soil organic matter fractions in mountain forest soils.For this purpose,a climosequence approach comprising north(N)and south(S)exposure along the altitudinal gradient(600,800,1000 and 1200 m a.s.l.)was set up.By comparing the properties of decomposing deadwood and those of the soils located directly beneath the decaying wood we drew conclusions about the role of deadwood in the shaping of soil organic matter fractions and soil carbon storage in different climate conditions.The basic properties,enzymatic activity and fractions of soil organic matter(SOM)were determined in deadwood and affected directly by the components released from decaying wood.Heavily decomposed deadwood impacts soil organic matter stabilization more strongly than the less decayed deadwood and the light fraction of SOM is more sensitive to deadwood effects than the heavy fraction regardless of the location in the altitude gradient.Increase in SOM mineral-associated fraction C content is more pronounced in soils under the influence of deadwood located in lower locations of warmer exposure.Nutrients released from decaying wood stimulate the enzymatic activity of soils that are within the range of deadwood influence. 展开更多
关键词 Enzyme activity Forest soils Heavy fraction Light fraction Soil organic matter
下载PDF
Effect of Poly-β-Hydroxybutyrate on the Activity of Nonspecific Immunity Related Enzymes in Fenne rope naeus chinensis
12
作者 Zhang Hengheng Meng Xianhong +5 位作者 Kong Jie Luo Kun Luan Sheng Cao Baoxiang Cao Jiawang Zhang Yingxue 《Animal Husbandry and Feed Science》 CAS 2018年第1期18-23,74,共7页
[Objective] This study was carried out to explore the effect of poly-β-hydroxybutyrate(PHB) on the performance of the nonspecific immune system in Fenneropenaeus chinensis. [Method] F. chinensis individuals were as... [Objective] This study was carried out to explore the effect of poly-β-hydroxybutyrate(PHB) on the performance of the nonspecific immune system in Fenneropenaeus chinensis. [Method] F. chinensis individuals were assigned into six groups, and each group was fed with a diet containing 0(Control), 0.5%(Group E0.5), 1.0%(Group E1.0), 2.5%(Group E2.5), 5.0%(Group E5.0) or 10.0% PHB(Group E10.0). The mortality rate and relative percent of survival(RPS) of each group were calculated after 6 weeks. Meanwhile, the total antioxidant capacity(T-AOC), the activity of acid phosphatase(ACP), peroxidase(POD) and catalase(CAT), and the content of malondialdehyde(MDA) in hepatopancreas and serum were measured,and their correlation with PHB concentration was analyzed. [Result] The RPS in PHB treated shrimps increased initially and decreased subsequently with increasing PHB concentration. RPS of Group E1.0 was the highest, showing significant difference from that of other groups( P 〈0.05).With the increase in PHB concentration, the activity of immunity related enzymes changed in a similar pattern with RPS: increasing at first and decreasing subsequently. In addition, the activity of the enzymes was elevated in the 2nd and 3rd weeks of PHB administration. Among them, T-AOC in serum of groups E1.0 and E2.5, T-AOC in hepatopancreas of Group E1.0, ACP activity in serum of groups E1.0 and E2.5, ACP activity in hepatopancreas of Group E1.0, CAT activity in groups E0.5, E1.0 and E2.5, CAT activity in hepatopancreas of groups E0.5, E1.0 and E10.0, POD activity in both serum and hepatopancreas of groups E0.5, E1.0 and E2.5, SOD activity in both serum and hepatopancreas of Group E1.0, MDA content in serum of Group E1.0 and MDA content in hepatopancreas of groups E0.5 and E1.0 showed significant difference from those of other groups(P〈0.05). [Conclusion] PHB can improve the immunity of F. chinensis, 1.0% in feed has the best effect, and the total enzyme activity reaches the highest level in the 2nd and 3rd weeks of PHB administration. 展开更多
关键词 Fenneropenueus chinensis poly-β-hydroxybutyrate (PHIl): Relative percent of survival Enzyme activity
下载PDF
Effects of Different Nitrogen and Phosphorus Synergistic Fertilizer on Enzymes and Genes Related to Nitrogen Metabolism in Wheat
13
作者 Yajun Li Yihui Wang +2 位作者 Shuang Chen Yu Gao Yan Shi 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第7期2151-2164,共14页
In recent years,in order to improve nutrient use efficiency,especially nitrogen use efficiency,fertilizer valueadded technology has been developed rapidly.However,the mechanism of the effect of synergistic fertilizer ... In recent years,in order to improve nutrient use efficiency,especially nitrogen use efficiency,fertilizer valueadded technology has been developed rapidly.However,the mechanism of the effect of synergistic fertilizer on plant nitrogen utilization is not clear.A study was,therefore,conducted to explore the activities and gene expression of key enzymes for nitrogen assimilation and the gene expression of nitrogen transporters in wheat after the application of synergistic fertilizer.Soil column experiment was set up in Qingdao Agricultural University experimental base from October 2018 to June 2019.Maleic acid and itaconic acid were copolymerized with acrylic acid as cross-linking monomer to make a fluid gel,which was sprayed on the fertilizer surface to make nitrogen and phosphorus synergistic fertilizer.A total of 6 treatments was set according to different nitrogen and phosphorus fertilizer ratios:(1)100%common nitrogen fertilizer+100%common phosphate fertilizer(2)70%nitrogen synergistic fertilizer+100%phosphorus synergistic fertilizer;(3)100%nitrogen synergistic fertilizer+70%phosphorus synergistic fertilizer;(4)100%nitrogen synergistic fertilizer+100%phosphorus synergistic fertilizer;(5)70%nitrogen synergistic fertilizer+70%phosphorus synergistic fertilizer;(6)100%commercial nitrogen synergistic fertilizer+100%commercial phosphorus synergistic fertilizer.The results are as follows:(1)the enzyme activities of wheat plants under synergistic fertilizer condition were higher than those under ordinary fertilizer,except under the treatment that nitrogen and phosphorus synergistic fertilizer were both reduced;(2)the expression level of the genes under the treatment“100%nitrogen synergistic fertilizer+100%phosphorus synergistic fertilizer”was significantly higher than those in other treatments.Combined with the higher performance of nitrogen concentration in various parts of the plant under the condition of applying synergistic fertilizer,this study indicated that the application of synergistic fertilizer can improve the nitrogen metabolism of the plant by increasing the nitrogen level in the rhizosphere soil,inducing the expression of nitrogen transporter genes and key assimilation enzymes genes. 展开更多
关键词 Nitrogen and phosphorus synergistic fertilizer nitrogen transporter gene nitrogen assimilation enzyme activity
下载PDF
Effects of Combined Application of Biochar-based Organic Fertilizer and Reduced Nitrogen Fertilizer on Soil Enzyme Activity and Yield of Purple Cabbage(Brassica oleracea var.capita rubra)in Yuanmou County
14
作者 Ben YANG Xiaoying LI +2 位作者 Yuechao WANG Mengjie CHEN Xiaoqin CHEN 《Agricultural Biotechnology》 CAS 2023年第2期76-83,共8页
[Objectives]In response to the issue of soil improvement in Yuanmou County,the effects of combined application of biochar-based organic fertilizer and reduced nitrogen fertilizer on soil nutrients,soil enzyme activity... [Objectives]In response to the issue of soil improvement in Yuanmou County,the effects of combined application of biochar-based organic fertilizer and reduced nitrogen fertilizer on soil nutrients,soil enzyme activity,and yield of purple cabbage(Brassica oleracea var.capita rubra)were investigated in the field base of Institute of Thermal Zone Ecological Agriculture,Yunnan Academy of Agricultural Sciences in Yuanmou County.[Methods]A total of 13 treatments were set up by applying biochar-based organic fertilizer at three levels of 15,30 and 45 t/hm^(2)(T_(1),T_(2),T_(3)),combined with top application of nitrogen fertilizer(urea)at four levels:375(N_1),300(N_(2)),225(N_(3))and 0 kg/hm^(2),with non-fertilizing treatment as control check(CK),in order to explore the optimal ratio for the combined application of biochar-based organic fertilizer with nitrogen fertilizer.[Results]The application of biochar-based organic fertilizer could significantly improve soil nutrients,enzyme activity,and purple cabbage yield.The improvement effect of combined application with nitrogen fertilizer was higher than that of single application of biochar-based organic fertilizer,and the improvement effect was enhanced with the application amount of biochar-based organic fertilizer increasing.The contents of organic matter and total nitrogen were the highest in treatment T_(3)N_(3),of which the values increased by 81.39%and 56.09%compared with the CK,respectively.The contents of soil hydrolyzable nitrogen,available phosphorus,and available potassium were all the highest under treatment T_(3)N_(2),with increases of 92.76%,171.01%and 235.50%,respectively.There was a significant positive correlation between the activity of soil catalase,urease,and sucrase and organic matter,total nitrogen,and available nutrients.The overall soil enzyme activity was relatively higher in treatment T_(3)N_(2).The yield of purple cabbage treated with biochar-based organic fertilizer combined with nitrogen fertilizer could reach 85750 kg/hm^(2),which was 94.78%higher than that treated with biochar-based organic fertilizer alone.Based on comprehensive analysis,the optimal combination ratio was 45 t/hm^(2)of biochar-based organic fertilizer and 300 kg/hm^(2)of urea(T_(3)N_(2)).[Conclusions]This study provides data support for the promotion of biochar-based organic fertilizers and reduced fertilizer in agricultural soil in the Dam area of Yuanmou County. 展开更多
关键词 Soil enzyme activity YIELD Biochar-based organic fertilizer Nitrogenous fertilizer Purple cabbage
下载PDF
Effects of Carbon Nanomaterials on Soil Enzyme Activity of Turfgrass
15
作者 Ying XIONG Xue BAI +1 位作者 Shulan ZHAO Li'an DUO 《Agricultural Biotechnology》 CAS 2023年第1期76-77,83,共3页
[Objectives]This study was conducted to evaluate the effects of carbon nanomaterials on soil ecosystem and explore the ecological risks of environmental exposure of carbon nanomaterials. [Methods] The effects of carbo... [Objectives]This study was conducted to evaluate the effects of carbon nanomaterials on soil ecosystem and explore the ecological risks of environmental exposure of carbon nanomaterials. [Methods] The effects of carbon nanomaterials on soil enzyme activity was studied by adding graphene, graphene oxide and carbon nanotubes to turfgrass soil. [Results] Compared with the control(CK), the activity of soil protease, sucrase, alkaline phosphatase and catalase was not significantly affected by carbon nanomaterials. Under the treatment of carbon nanotubes, urease activity was significantly lower than that of graphene and graphene oxide, and dehydrogenase activity was significantly lower than that of the CK, graphene and graphene oxide. [Conclusions] This study provides a theoretical basis for the safe application of carbon nanomaterials. 展开更多
关键词 Carbon nanomaterials TURFGRASS Soil enzyme activity
下载PDF
Effects of Bamboo Charcoal-based Biochar on Soil Enzyme Activity and Microbial Community Structure
16
作者 Yizu PAN Sihai ZHANG 《Agricultural Biotechnology》 CAS 2023年第2期84-86,90,共4页
[Objectives]This study was conducted to reveal the effects of bamboo charcoal-based biochar(or bamboo charcoal for short)on soil enzyme activity and microbial community structure.[Methods]The field experiment was carr... [Objectives]This study was conducted to reveal the effects of bamboo charcoal-based biochar(or bamboo charcoal for short)on soil enzyme activity and microbial community structure.[Methods]The field experiment was carried out at the Modern Agriculture Demonstration Base of Gaoping Village,Gaoping Town,Suichang County,Zhejiang Province.Bamboo charcoal was applied at four different levels:T_(0)(no bamboo charcoal),T_(1)(1125 kg/hm^(2)bamboo charcoal),T_(2)(2250 kg/hm^(2)bamboo charcoal)and T_(3)(3375 kg/hm^(2)bamboo charcoal).Soil physicochemical properties and enzyme activities in different treatments were measured.[Results]The soil fungal,bacterial and actinomycete populations increased significantly in the soils surrounding capsicum roots.The bacterial population,fungal population and fungus/bacterium ratio peaked in Treatment T_(2),up to 7.32×10^(6)cfu/g,2.65×10^(4)cfu/g and 0.36×10^(-2),respectively.The effect of bamboo charcoal in promotingβ-glucoside,catalase,acid phosphatase and sucrase activities was T_(2)>T_(3)>T_(1)>T_(0).With bamboo charcoal increasing,the bacterium population,fungus population,fungus/bacterium ratio,β-glucoside,catalase,acid phosphatase and sucrase activities all increased at first and then decreased.T_(2)treatment showed the best effects in improving soil physicochemical properties and microbial community structure.[Conclusions]Bamboo charcoal significantly improves soil enzyme activity and increases soil microbial population,and thus has important positive effects on the soil ecosystem. 展开更多
关键词 Bamboo charcoal-based biochar Soil enzyme activity Microbial community structure
下载PDF
Effect of Foliar Application of Amino Acid on the Quality and Enzyme Activity of Flowering Chinese Cabbage(Brassica parachinensis Bailey) 被引量:7
17
作者 彭智平 黄继川 +3 位作者 于俊红 李文英 杨林香 林志军 《Agricultural Science & Technology》 CAS 2011年第1期50-53,73,共5页
A pot experiment was conducted to study the influences of foliar application of glycine,alanine,lysine,and glutamic acid in 200 mg/kg or 500 mg/kg upon the quality and enzyme activity of flowering Chinese cabbage(Bra... A pot experiment was conducted to study the influences of foliar application of glycine,alanine,lysine,and glutamic acid in 200 mg/kg or 500 mg/kg upon the quality and enzyme activity of flowering Chinese cabbage(Brassica parachinensis Bailey).The results showed that all the application of these four amino acids could increase the yield of flowering Chinese cabbage,significantly raise the content of soluble sugar,and reduce the accumulation of nitrate.The applications of three other amino acids except alanine can increase the content of soluble proteins and decrease the accumulation of oxalic acid.However,the application of amino acid has insignificant influences on the SPAD number of chlorophyll,and causes the decrease of Vitamin C content.Meanwhile,the application of amino acid can improve the activity of nitrate reductase(NR) and glutamate dehydrogenase(GDH) as well.It shows that the application of amino acid is beneficial to improve ammonia metabolism,reduce the accumulation of nitrate and oxalic acid,increase the content of soluble sugar and soluble proteins,and improve the quality of flowering Chinese cabbage. 展开更多
关键词 Flowering Chinese cabbage(Brassica parachinensis Bailey) Amino acid NITRATE Oxalic acid Enzyme activity(NR GDH) QUALITY
下载PDF
Mixing Alfalfa Straw and Maize Straw to Enhance Nitrogen Mineralization, Microbial Biomass and Enzyme Activity: A Laboratory Study 被引量:5
18
作者 李涛 葛晓颖 +1 位作者 何春娥 欧阳竹 《Agricultural Science & Technology》 CAS 2016年第8期1869-1874,共6页
The quality of straw affects N release after straw retention. As straw with high C: N ratio could result in N immobilization, additional N is needed to compensate N demand of crops. However, more and more N fertilize... The quality of straw affects N release after straw retention. As straw with high C: N ratio could result in N immobilization, additional N is needed to compensate N demand of crops. However, more and more N fertilizers have been applied to the soil to improve crop yields in China, which not only increases production cost but also reduces soil quality. Therefore, reasonable application of N fertilizer becomes a key problem after straw retention. This study aimed to assess the effects of applying maize straw with high quality alfalfa straw on mineral N content, microbial biomass and enzyme activity under controlled conditions. The effect of applying maize straw with alfalfa straw was compared with that of maize straw in combination with N fertilizer under the same C: N ratio (25:1). The laboratory incubation experiment consisted of four treatments: (1) soil with no addition (CK); (2) soil amended with maize straw (M); (3) soil amended with alfalfa straw and maize straw with an adjusted C: N ratio of 25:1 (MM); (4) soil amended with inorganic nitrogen fertilizer and maize straw with an adjusted C:N ratio of 25:1 (MF). The results showed that application of maize straw leaded to an N immobilization during the 270 d of incubation. Combined application of alfalfa and maize straw and or mineral N fertilizer alleviates the N immobilization and increase soil mineral N content. Compared to MF treatment, MM treatment prolonged N availability during the incubation. MM and MF treatments increased the soil microbial biomass carbon and nitrogen contents, and soil invertase and β-glycosidase activities. There was no difference between MM and M treatment in soil urease activity. MF treatment had significantly negative influence on soil urease activity compared with M treatment. The amount of added N significantly affected mineral N content, soil microbial biomass and enzyme activity. The mixture of alfalfa straw and maize straw sustains higher level of mineral N content, microbial biomass and enzyme activity as it had high N input compared to maize straw in combination with N fertilizer. It is concluded that alfalfa straw may be a better N source than N fertilizer in alleviating N immobilization caused by maize straw retention. 展开更多
关键词 Straw retention C: N ratio Mineral N Soil microbial biomass Soil enzyme activity
下载PDF
Effects of Different Exogenous Hormones on Rooting of Syringa microphylla Cuttings and Change in Related Enzyme Activity During the Rooting Process 被引量:2
19
作者 颜婷美 张安琪 +5 位作者 王峰 李承秀 于永畅 牛田 王郑昊 王长宪 《Agricultural Science & Technology》 CAS 2013年第12期1714-1718,共5页
[Objective] This study aimed to investigate the effects of different exoge- nous hormones on the rooting of Syringa microphylla cuttings and the change in related enzymes activity during the rooting process. [Method] ... [Objective] This study aimed to investigate the effects of different exoge- nous hormones on the rooting of Syringa microphylla cuttings and the change in related enzymes activity during the rooting process. [Method] Three different exoge- nous hormones IBA, NAA and ABT, each with concentrations of 500, 1 000, 1 500 and 2 000 mg/L were used to treat S. microphylla cuttings, and changes in the ac- tivities of peroxidase (POD), poiyphenol oxidase (PPO) and indoleacetic acid oxidase (IAAO) during the rooting process were also investigated. [Result] The most appro- priate concentrations of IBA, ABT and NAA were 1 500, 1 000 and 1 000 mg/L, respectively, and the 1 500 mg/L IBA treatment exhibited the best effect on rooting. Throughout the rooting process, POD and PPO activities showed the same trends in the treatment groups as those in the control group, but the POD and PPO activi- ties in the treatment groups were increased significantly, with greater amplitude of variation; at the early stage, IAAO activity exhibited an opposite trend between the control group and the treatment groups, which increased slowly in the former, but decreased rapidly in the latter, and it was significantly lower in the treatment groups compared to the control; additionally, higher POD and IAAO activities were con- ducive to the induction of adventitious roots, and lower POD and IAAO activities fa- vored their formation and elongation. [Conclusion] This study has preliminarily clari- fied the rooting mechanism of S. microphylla cuttings. 展开更多
关键词 Syringa microphylla AUXINS Cottage rooting Enzyme activity
下载PDF
Effects of Different Vegetable Planting Modes on Soil Microbial Flora and Enzyme Activity 被引量:1
20
作者 孟平红 肖厚军 +4 位作者 郭惊涛 蔡霞 潘德怀 付纪勇 李桂莲 《Agricultural Science & Technology》 CAS 2015年第10期2265-2268,2272,共5页
To investigate the effects of different vegetable growing regions and planting modes on soil quality,soils in high,medium and low altitude areas of Guizhou were respectively sampled under different vegetable efficient... To investigate the effects of different vegetable growing regions and planting modes on soil quality,soils in high,medium and low altitude areas of Guizhou were respectively sampled under different vegetable efficient planting modes,and the variations of soil microbial flora and enzyme activities were analyzed. The soil microbial count and total bacteria of the vegetable efficient cultivation mode were significantly higher than that of the control (traditional planting mode) in each planting area,and the microbial diversity index was also improved to varying de- grees.The soil phosphatase,catalase and urease activities of the vegetable efficient planting mode were higher than that of the control.The soil catalase and urease activities were higher than that of the control by 1.37-1.44 and 1.51-2.80 times. Application of vegetable efficient planting mode in different regions will help to im- prove the soil quality in a given period. 展开更多
关键词 VEGETABLE Efficient planting mode Growing region Soil microbial flora Soil enzyme activity Biodiversity index
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部