The objective of the present study was to develop a computer software for simulating the temporal development of plant disease epidemics using Richards, logistic, Gompertz, monomolecular, and exponential functions, re...The objective of the present study was to develop a computer software for simulating the temporal development of plant disease epidemics using Richards, logistic, Gompertz, monomolecular, and exponential functions, respectively, and for predicting disease with a fitted model. The software was programmed using Visual Basic (VB6.0) and packaged with the Wise Installation System. The Fibonacci ('0.618') section strategy was used to find out the most appropriate value for the shape parameter (m) in Richards function simulation through looping procedures. The software program was repeatedly tested, debugged and edited until it was run through favorably and produced ideal outputs. It was named Epitimulator based on the phrase 'epidemic time simulator' and has been registered by the National Copyright Department of China (Reg. no. 2007SR18489). It can be installed and run on personal computers with all versions of Windows operational systems. Data of disease index and survey time are keyed in or imported from Access files. The output of fitted models and related data of parameters can be pasted into Microsoft Excel worksheet or into Word document for editing as required and the simulated disease progress curves can be stored in separate graphic files. After being finally tested and completed, Epitimulator was applied to simulate the epidemic progress of corn northern leaf blight (Exserohilum turcicum) with recorded data from field surveys of corn crops and the fitted models were output. Comparison of the simulation results showed that the disease progress was always best described by Richards function, which resulted in the most accurate simulation model. Result also showed that forecast of northern leaf blight development was highly accurate by using the computed progress model from Richards function.展开更多
To effectively track the impact of population migration between regions on the spread of infectious diseases, this paper proposes a visualized analysis and prediction system of infectious diseases based on the improve...To effectively track the impact of population migration between regions on the spread of infectious diseases, this paper proposes a visualized analysis and prediction system of infectious diseases based on the improved SIR model. The research contents including: using the multi graph link interaction mode, visualizing the space-time distribution and development trend of infectious diseases;The LightGBM model is used to track the changes of infection rate and recovery rate, and the Mi/Mo SIR model is constructed according to the initial data of different populations;Mi/Mo SIR model is used to predict infectious diseases in combination with visual panel, providing users with tools to analyze and explain the space-time characteristics and potential laws of infectious diseases. The study found that the closure of cities and the restriction of personnel mobility were necessary and effective, and the system provided an important basis for the prediction and early warning of infectious diseases.展开更多
Public health officials are increasingly recognizing the need to develop disease-forecasting systems to respond to epidemic and pandemic outbreaks.For instance,simple epidemic models relying on a small number of param...Public health officials are increasingly recognizing the need to develop disease-forecasting systems to respond to epidemic and pandemic outbreaks.For instance,simple epidemic models relying on a small number of parameters can play an important role in characterizing epidemic growth and generating short-term epidemic forecasts.In the absence of reliable information about transmission mechanisms of emerging infectious diseases,phenomenological models are useful to characterize epidemic growth patterns without the need to explicitly model transmission mechanisms and the natural history of the disease.In this article,our goal is to discuss and illustrate the role of regularization methods for estimating parameters and generating disease forecasts using the generalized Richards model in the context of the 2014e15 Ebola epidemic in West Africa.展开更多
基金supported by the National Programs of Public-Beneficiary Sectors Funds,Ministryof Science and Technology,China(200803024)
文摘The objective of the present study was to develop a computer software for simulating the temporal development of plant disease epidemics using Richards, logistic, Gompertz, monomolecular, and exponential functions, respectively, and for predicting disease with a fitted model. The software was programmed using Visual Basic (VB6.0) and packaged with the Wise Installation System. The Fibonacci ('0.618') section strategy was used to find out the most appropriate value for the shape parameter (m) in Richards function simulation through looping procedures. The software program was repeatedly tested, debugged and edited until it was run through favorably and produced ideal outputs. It was named Epitimulator based on the phrase 'epidemic time simulator' and has been registered by the National Copyright Department of China (Reg. no. 2007SR18489). It can be installed and run on personal computers with all versions of Windows operational systems. Data of disease index and survey time are keyed in or imported from Access files. The output of fitted models and related data of parameters can be pasted into Microsoft Excel worksheet or into Word document for editing as required and the simulated disease progress curves can be stored in separate graphic files. After being finally tested and completed, Epitimulator was applied to simulate the epidemic progress of corn northern leaf blight (Exserohilum turcicum) with recorded data from field surveys of corn crops and the fitted models were output. Comparison of the simulation results showed that the disease progress was always best described by Richards function, which resulted in the most accurate simulation model. Result also showed that forecast of northern leaf blight development was highly accurate by using the computed progress model from Richards function.
文摘To effectively track the impact of population migration between regions on the spread of infectious diseases, this paper proposes a visualized analysis and prediction system of infectious diseases based on the improved SIR model. The research contents including: using the multi graph link interaction mode, visualizing the space-time distribution and development trend of infectious diseases;The LightGBM model is used to track the changes of infection rate and recovery rate, and the Mi/Mo SIR model is constructed according to the initial data of different populations;Mi/Mo SIR model is used to predict infectious diseases in combination with visual panel, providing users with tools to analyze and explain the space-time characteristics and potential laws of infectious diseases. The study found that the closure of cities and the restriction of personnel mobility were necessary and effective, and the system provided an important basis for the prediction and early warning of infectious diseases.
基金Dr.Gerardo Chowell acknowledges financial support from NSF grant 1414374 as part of the joint NSF-NIH-USDA Ecology and Evolution of Infectious Diseases programUK Biotechnology and Biological Sciences Research Council grant BB/M008894/1 and NSF grant 1610429.
文摘Public health officials are increasingly recognizing the need to develop disease-forecasting systems to respond to epidemic and pandemic outbreaks.For instance,simple epidemic models relying on a small number of parameters can play an important role in characterizing epidemic growth and generating short-term epidemic forecasts.In the absence of reliable information about transmission mechanisms of emerging infectious diseases,phenomenological models are useful to characterize epidemic growth patterns without the need to explicitly model transmission mechanisms and the natural history of the disease.In this article,our goal is to discuss and illustrate the role of regularization methods for estimating parameters and generating disease forecasts using the generalized Richards model in the context of the 2014e15 Ebola epidemic in West Africa.