在2006.7—2007.12期间,采用SYBR Green I染色-荧光显微直接计数法,对江苏沿海海域浮游病毒丰度进行了四个季度的调查,同时调查还包括细菌丰度、叶绿素a浓度。浮游病毒水平分布呈现中间高,两侧低。苏北浅滩海域病毒含量最高,最高值为47....在2006.7—2007.12期间,采用SYBR Green I染色-荧光显微直接计数法,对江苏沿海海域浮游病毒丰度进行了四个季度的调查,同时调查还包括细菌丰度、叶绿素a浓度。浮游病毒水平分布呈现中间高,两侧低。苏北浅滩海域病毒含量最高,最高值为47.90×106个/mL;吕泗海域最低,最低值为0.03×106个/mL。季节变化表现为冬季最高,夏季次之,春秋季相当。垂直分布也变现为明显的季节变化,除秋季外,表层浮游病毒丰度高于底层水体。浮游病毒与细菌丰度比(VBR)为0.30—180.08,平均为18.35。春季浮游病毒与叶绿素a、细菌之间均存在较强的相关性,相关系数分别为0.79和0.74(P<0.01);而在秋季,浮游病毒只与细菌有较强的相关性(r=0.79,P<0.01),这说明不同季节,浮游病毒的主要宿主会发生变化。展开更多
In the present investigation, the sensitivity of different direct microbial count procedures applied on systems containing both planktonics and sessiles was tested. The direct count pour plate was compared with direct...In the present investigation, the sensitivity of different direct microbial count procedures applied on systems containing both planktonics and sessiles was tested. The direct count pour plate was compared with direct epifluorescent microscopic enumerations in order to evaluate the efficiency of the studied techniques in giving information about microbial activity or viability. Our results indicate that the standard plate count procedure is the most sensitive method to estimate viable and cultivable planktonic cells. On the other hand, direct enumeration by epifluorescent microscopy may become an interesting alternative to count sessile cells.展开更多
Control of blend morphology at multi-scale is critical for optimizing the power conversion efficiency(PCE)of plastic solar cells.To better understand the physics of photoactive layer in the organic photovoltaic device...Control of blend morphology at multi-scale is critical for optimizing the power conversion efficiency(PCE)of plastic solar cells.To better understand the physics of photoactive layer in the organic photovoltaic devices,it is necessary to gain understanding of morphology and the corresponding electronic property.Herein we report the correlation between nanoscale structural,electric properties of bulk heterojunction(BHJ)solar cells and the annealing-induced PCE change.We demonstrate that the PCE of BHJ solar cells are dramatically improved(from1.3%to 4.6%)by thermal annealing,which results from P3HT crystalline stacking and the PCBM aggregation for interpenetrated network.The similar trend for annealinginduced photovoltage and PCE evolution present as an initial increase followed by a decrease with the annealing time and temperature.The surface roughness increase slowly and then abruptly after the same inflection points observed for photovoltage and PCE.The phase images in electric force microscopy indicate the optimized P3HT and PCBM crystallization for interpenetrating network formation considering the spectroscopic results as well.From the correlation between surface photovoltage,blend morphology,and PCE,we propose a model to illustrate the film structure and its evolution under different annealing conditions.This work would benefit the better design and optimization of the morphology and local electric properties of solar cell active layers for improved PCE.展开更多
文摘在2006.7—2007.12期间,采用SYBR Green I染色-荧光显微直接计数法,对江苏沿海海域浮游病毒丰度进行了四个季度的调查,同时调查还包括细菌丰度、叶绿素a浓度。浮游病毒水平分布呈现中间高,两侧低。苏北浅滩海域病毒含量最高,最高值为47.90×106个/mL;吕泗海域最低,最低值为0.03×106个/mL。季节变化表现为冬季最高,夏季次之,春秋季相当。垂直分布也变现为明显的季节变化,除秋季外,表层浮游病毒丰度高于底层水体。浮游病毒与细菌丰度比(VBR)为0.30—180.08,平均为18.35。春季浮游病毒与叶绿素a、细菌之间均存在较强的相关性,相关系数分别为0.79和0.74(P<0.01);而在秋季,浮游病毒只与细菌有较强的相关性(r=0.79,P<0.01),这说明不同季节,浮游病毒的主要宿主会发生变化。
文摘In the present investigation, the sensitivity of different direct microbial count procedures applied on systems containing both planktonics and sessiles was tested. The direct count pour plate was compared with direct epifluorescent microscopic enumerations in order to evaluate the efficiency of the studied techniques in giving information about microbial activity or viability. Our results indicate that the standard plate count procedure is the most sensitive method to estimate viable and cultivable planktonic cells. On the other hand, direct enumeration by epifluorescent microscopy may become an interesting alternative to count sessile cells.
基金supported by the National Basic Research Program of China(2011CB932800 and 2013CB934200)Sino-British Collaboration Program(2010DFA64680)+1 种基金National Natural Science Foundation of China(20973043)Chinese Academy of Sciences(KGCX2-YW-375-3)
文摘Control of blend morphology at multi-scale is critical for optimizing the power conversion efficiency(PCE)of plastic solar cells.To better understand the physics of photoactive layer in the organic photovoltaic devices,it is necessary to gain understanding of morphology and the corresponding electronic property.Herein we report the correlation between nanoscale structural,electric properties of bulk heterojunction(BHJ)solar cells and the annealing-induced PCE change.We demonstrate that the PCE of BHJ solar cells are dramatically improved(from1.3%to 4.6%)by thermal annealing,which results from P3HT crystalline stacking and the PCBM aggregation for interpenetrated network.The similar trend for annealinginduced photovoltage and PCE evolution present as an initial increase followed by a decrease with the annealing time and temperature.The surface roughness increase slowly and then abruptly after the same inflection points observed for photovoltage and PCE.The phase images in electric force microscopy indicate the optimized P3HT and PCBM crystallization for interpenetrating network formation considering the spectroscopic results as well.From the correlation between surface photovoltage,blend morphology,and PCE,we propose a model to illustrate the film structure and its evolution under different annealing conditions.This work would benefit the better design and optimization of the morphology and local electric properties of solar cell active layers for improved PCE.