The molecular beam epitaxial growth of high quality epilayers on (100) InP substrate using a valve phosphorous cracker cell over a wide range of P/In BEP ratio (2.0-7.0) and growth rate (0.437 and 0. 791μm/h). ...The molecular beam epitaxial growth of high quality epilayers on (100) InP substrate using a valve phosphorous cracker cell over a wide range of P/In BEP ratio (2.0-7.0) and growth rate (0.437 and 0. 791μm/h). Experimental results show that electrical properties exhibit a pronounced dependence on growth parameters,which are growth rate, P/In BEP ratio, cracker zone temperature, and growth temperature. The parameters have been optimized carefully via the results of Hall measurements. For a typical sample, 77K electron mobility of 4.57 × 10^4 cm^2/(V · s) and electron concentration of 1.55×10^15 cm^-3 have been achieved with an epilayer thickness of 2.35μm at a growth temperature of 370℃ by using a cracking zone temperature of 850℃.展开更多
The effect of an initially grown high-temperature A1N buffer (HT-A1N) layer's thickness on the quality of an A1N epilayer grown on sapphire substrate by metalorganic chemical vapor deposition (MOCVD) in a two-ste...The effect of an initially grown high-temperature A1N buffer (HT-A1N) layer's thickness on the quality of an A1N epilayer grown on sapphire substrate by metalorganic chemical vapor deposition (MOCVD) in a two-step growth process is investigated. The characteristics of A1N epilayers are analyzed by using triple-axis crystal X-ray diffraction (XRD) and atomic force microscopy (AFM). It is shown that the crystal quality of the A1N epilayer is closely related to its correlation length. The correlation length is determined by the thickness of the initially grown HT-A1N buffer layer. We find that the optimal HT-A1N buffer thickness for obtaining a high-quality A1N epilayer grown on sapphire substrate is about 20 nm.展开更多
InAs0.052Sb0.948 epilayers with cutoff wavelengths longer than 8 μm were successfully grown on InAs substrates using melt epitaxy (ME). Scanning electron microscopy observations show that the interface between the ...InAs0.052Sb0.948 epilayers with cutoff wavelengths longer than 8 μm were successfully grown on InAs substrates using melt epitaxy (ME). Scanning electron microscopy observations show that the interface between the epilayers and substrates is flat, indicating the good quality of the epilayers, and the thickness of the epilayers is 40 μm. Photoconductors were fabricated using InAs0.052Sb0.948 thick epilayers grown by ME. Ge optical lenses were set on the photoconductors. At room temperature, the photoresponse wavelength range was 2-10μm. The peak detectivity Dλp reached 5.4 × 10^9 cm-Hz^1/2.W^-1 for the immersed detectors. The detectivity D^* was 9.3 × 10^8 and 1.3 × 10^8 cm.Hz^1/2.W^-1 at the wavelength of 8 and 9 μm, respectively. The good performance of the uncooled InAsSb detectors was experimentally validated.展开更多
We study the effect of the AlGaN interlayer on structural quality and strain engineering of the GaN films grown on SiC substrates with an AlN buffer layer, hnproved structural quality and tensile stress releasing are ...We study the effect of the AlGaN interlayer on structural quality and strain engineering of the GaN films grown on SiC substrates with an AlN buffer layer, hnproved structural quality and tensile stress releasing are realized in unintentionally doped GaN thin films grown on 6H-SiC substrates by metal organic chemical vapor deposition. Using the optimized AlGaN interlayer, we find that the full width at half maximum of x-ray diffraction peaks for GaN decreases dramatically, indicating an improved crystalline quality. Meanwhile, it is revealed that the biaxial tensile stress in the GaN film is significantly reduced from the Raman results. Photoluminescence spectra exhibit a shift of the peak position of the near-band-edge emission, as well as the integrated intensity ratio variation of the near-band-edge emission to the yellow luminescence band. Thus by optimizing the AlGaN interlayer, we could acquire the high-quality and strain-relaxation GaN epilayer with large thickness on SiC substrates.展开更多
Excitation power and temperature-dependent photoluminescence(PL) spectra of the ZnTe epilayer grown on(100)Ga As substrate and ZnTe bulk crystal are investigated. The measurement results show that both the structu...Excitation power and temperature-dependent photoluminescence(PL) spectra of the ZnTe epilayer grown on(100)Ga As substrate and ZnTe bulk crystal are investigated. The measurement results show that both the structures are of good structural quality due to their sharp bound excitonic emissions and absence of the deep level structural defect-related emissions. Furthermore, in contrast to the ZnTe bulk crystal, although excitonic emissions for the ZnTe epilayer are somewhat weak, perhaps due to As atoms diffusing from the Ga As substrate into the ZnTe epilayer and/or because of the strain-induced degradation of the crystalline quality of the ZnTe epilayer, neither the donor–acceptor pair(DAP) nor conduction band-acceptor(e–A) emissions are observed in the ZnTe epilayer. This indicates that by further optimizing the growth process it is possible to obtain a high-crystalline quality ZnTe heteroepitaxial layer that is comparable to the ZnTe bulk crystal.展开更多
The infrared reflectance spectra of both 4H SiC substrates and epilayers are measured in a wave number range from 400 cm 1 to 4000 cm-1 using a Fourier-transform spectrometer. The thicknesses of the 4H-SiC epilayers a...The infrared reflectance spectra of both 4H SiC substrates and epilayers are measured in a wave number range from 400 cm 1 to 4000 cm-1 using a Fourier-transform spectrometer. The thicknesses of the 4H-SiC epilayers and the electrical properties, including the free-carrier concentrations and the mobilities of both the 4H SiC substrates and the epilayers, are characterized through full line-shape fitting analyses. The correlations of the theoretical spectral profiles with the 4H-SiC electrical properties in the 30 cm-1-4000 cm 1 and 400 cm-1-4000 cm-1 spectral regions are established by introducing a parameter defined as error quadratic sum. It is indicated that their correlations become stronger at a higher carrier concentration and in a wider spectral region (30 cm-1-4000 cm-1). These results suggest that the infrared reflectance technique can be used to accurately determine the thicknesses of the epilayers and the carrier concentrations, and the mobilities of both lightly and heavily doped 4H-SiC wafers.展开更多
This paper reported a simple and effective method for fabricating and patterning highly ordered ZnO nanorod arrays on H2-decomposed GaN epilayer via hydrothermal route. The edge of pattern, which has been decomposed b...This paper reported a simple and effective method for fabricating and patterning highly ordered ZnO nanorod arrays on H2-decomposed GaN epilayer via hydrothermal route. The edge of pattern, which has been decomposed by H2 flow, provides appropriate nucleation sites for the selective-growth of aligned ZnO nanorods. The density of ZnO nanorod arrays assembled the hexagonal pattern can be tuned by varying the solution concentrations, growth time and reaction temperatures. The results have demonstrated that the ZnO nanorods are highly uniform in diameter and height with perfect alignment and are epitaxially grown along [0001] direc- tion. This work provides a novel and accessible route to prepare oriented and aligned ZnO nanorod arrays pattern. And the aligned ZnO nanorods form an ideal hexagonal pattern that might be used in many potential applications of ZnO nanomaterials.展开更多
Contacting mode atomic force microscopy (AFM) is used to measure the In 0.35 Ga 0.65 As/GaAs epilayer grown at low temperature (460℃).Unlike the normal layer by layer growth (FvdM mode) or self organized i...Contacting mode atomic force microscopy (AFM) is used to measure the In 0.35 Ga 0.65 As/GaAs epilayer grown at low temperature (460℃).Unlike the normal layer by layer growth (FvdM mode) or self organized islands growth (SK mode),samples grown under 460℃ are found to be large islands with atomic thick terraces.AFM measurements reveale near one monolayer high steps.This kind of growth is good between FvdM and SK growth modes and can be used to understand the evolution of strained epitaxy from FvdM to SK mode.展开更多
Low pressure MOCVD has been used to investigate the properties of low temperature buffer layer deposition conditions and their influence on the properties of high temperature GaN epilayers grown subsequently. It is fo...Low pressure MOCVD has been used to investigate the properties of low temperature buffer layer deposition conditions and their influence on the properties of high temperature GaN epilayers grown subsequently. It is found that the surface morphology of the as grown buffer layer after thermal annealing at 1 030 ℃ and 1 050 ℃ depends strongly on the thickness of the buffer layer. In particular when a thick buffer layer is used, large trapezoidal nuclei are formed after annealing.展开更多
The properties of GaSb substrates commonly used for the preparation of Ⅲ Ⅴ antimonide epilayers were studied before and after growing GaInAsSb multi layers by MOCVD using PL, FTIR and DCXD together with the electr...The properties of GaSb substrates commonly used for the preparation of Ⅲ Ⅴ antimonide epilayers were studied before and after growing GaInAsSb multi layers by MOCVD using PL, FTIR and DCXD together with the electrical properties and EPD values. The correlation between the substrate qualities and epilayer properties was briefly discussed. The good property epilayers of GaInAsSb and, then, the high performance of 2.3 μm photodetectors were achieved only when the good quality GaSb wafers was used as the substrates.展开更多
A near-infrared germanium(Ge)Schottky photodetector(PD)with an ultrathin silicon(Si)barrier enhancement layer between the indium-doped tin oxide(ITO)electrode and Ge epilayer on Si or silicon-on-insulator(SOI)is propo...A near-infrared germanium(Ge)Schottky photodetector(PD)with an ultrathin silicon(Si)barrier enhancement layer between the indium-doped tin oxide(ITO)electrode and Ge epilayer on Si or silicon-on-insulator(SOI)is proposed and fabricated.The well-behaved ITO/Si cap/Ge Schottky junctions without intentional doping process for the Ge epilayer are formed on the Si and SOI substrates.The Si-and SOI-based ITO/Si cap/Ge Schottky PDs exhibit low dark current densities of 33 mA/cm2 and 44 mA/cm2,respectively.Benefited from the high transmissivity of ITO electrode and the reflectivity of SOI substrate,an optical responsivity of 0.19 A/W at 1550 nm wavelength is obtained for the SOI-based ITO/Si cap/Ge Schottky PD.These complementary metal–oxide–semiconductor(CMOS)compatible Si(or SOI)-based ITO/Si cap/Ge Schottky PDs are quite useful for detecting near-infrared wavelengths with high efficiency.展开更多
InAlN epilayers were grown on high quality GaN and A1N templates with the same growth parameters. Measurement results showed that two samples had the same In content of~16%,while the crystal quality and surface topog...InAlN epilayers were grown on high quality GaN and A1N templates with the same growth parameters. Measurement results showed that two samples had the same In content of~16%,while the crystal quality and surface topography of the InAlN epilayer grown on the AlN template,with 282.3"(002) full width at half maximum (FWHM) of rocking curve,313.5"(102) FWHM,surface roughness of 0.39 nm and V-pit density of 2.8×10~8 cm^(-2),were better than that of the InAlN epilayer grown on the GaN template,309.3",339.1",0.593 nm and 4.2×10~8 cm^(-2).A primary conclusion was proposed that both the crystal quality and the surface topography of the InAlN epilayer grown on the AlN template were better than that of the InAlN epilayer grown on the GaN template. Therefore,the AlN template was a better choice than the GaN template for getting high quality InAlN epilayers.展开更多
In this paper,1 μm n-GaN was grown by using varied and fixed ammonia flow (NH3) on SiNx mask layer on Si(111) substrate using metal organic chemical vapor deposition (MOCVD). In-situ optical reflectivity traces of Ga...In this paper,1 μm n-GaN was grown by using varied and fixed ammonia flow (NH3) on SiNx mask layer on Si(111) substrate using metal organic chemical vapor deposition (MOCVD). In-situ optical reflectivity traces of GaN growth show that the three-to two-dimensional process has been prolonged by using varied ammonia flow on SiNx mask layer method compared with that grown by fixing ammonia flow. Structural and optical properties were characterized by high-resolution X-ray diffraction and photolu-minescence,and compared with the sample grown by fixing ammonia flow,GaN grown using the varied ammonia flow on SiNx mask layer showed better structure and optical quality. It was assumed that the low NH3 flow in the initial growth stage considerably increased the GaN island density on the nano-porous SiNx layer by enhancing vertical growth. Lateral growth was significantly favored by high NH3 flow in the subsequent step. As a result,the improved crystal and optical quality was achieved utilizing NH3 flow modulation for GaN buffer growth on Si(111) substrate.展开更多
The growth by molecular beam epitaxy of high quality GaAs epilayers on nonmisoriented GaAs(111)B substrates is reported.Growth control of the GaAs epilayers is achieved via in situ,real time measurement of the specu...The growth by molecular beam epitaxy of high quality GaAs epilayers on nonmisoriented GaAs(111)B substrates is reported.Growth control of the GaAs epilayers is achieved via in situ,real time measurement of the specular beam intensity of reflection high-energy electron diffraction(RHEED).Static surface phase maps of GaAs(111)B have been generated for a variety of incident As flux and substrate temperature conditions.The dependence of GaAs(111)B surface reconstruction phases on growth parameters is discussed.The(191/2×191/2) surface reconstruction is identified to be the optimum starting surface for the latter growth of mirror-smooth epilayers.Regimes of growth conditions are optimized in terms of the static surface phase diagram and the temporal RHEED intensity oscillations.展开更多
Chloride-based fast homoepitaxial growth of 4H-SiC epilayers was performed on 4° off-axis 4H-SiC substrates in a home-made vertical hot-wall chemical vapor deposition(CVD) system using H2-SiH4-C2H4-HCl.The effe...Chloride-based fast homoepitaxial growth of 4H-SiC epilayers was performed on 4° off-axis 4H-SiC substrates in a home-made vertical hot-wall chemical vapor deposition(CVD) system using H2-SiH4-C2H4-HCl.The effect of the SiH_4/H_2 ratio and reactor pressure on the growth rate of 4H-SiC epilayers has been studied successively.The growth rate increase in proportion to the SiH_4/H_2 ratio and the influence mechanism of chlorine has been investigated.With the reactor pressure increasing from 40 to 100 Torr,the growth rate increased to 52μm/h and then decreased to 47 μm/h,which is due to the joint effect of H_2 and HC1 etching as well as the formation of Si clusters at higher reactor pressure.The surface root mean square(RMS) roughness keeps around 1 nm with the growth rate increasing to 49 μm/h.The scanning electron microscope(SEM),Raman spectroscopy and X-ray diffraction(XRD) demonstrate that 96.7 μm thick 4H-SiC layers of good uniformity in thickness and doping with high crystal quality can be achieved.These results prove that chloride-based fast epitaxy is an advanced growth technique for 4H-SiC homoepitaxy.展开更多
文摘The molecular beam epitaxial growth of high quality epilayers on (100) InP substrate using a valve phosphorous cracker cell over a wide range of P/In BEP ratio (2.0-7.0) and growth rate (0.437 and 0. 791μm/h). Experimental results show that electrical properties exhibit a pronounced dependence on growth parameters,which are growth rate, P/In BEP ratio, cracker zone temperature, and growth temperature. The parameters have been optimized carefully via the results of Hall measurements. For a typical sample, 77K electron mobility of 4.57 × 10^4 cm^2/(V · s) and electron concentration of 1.55×10^15 cm^-3 have been achieved with an epilayer thickness of 2.35μm at a growth temperature of 370℃ by using a cracking zone temperature of 850℃.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60876009)
文摘The effect of an initially grown high-temperature A1N buffer (HT-A1N) layer's thickness on the quality of an A1N epilayer grown on sapphire substrate by metalorganic chemical vapor deposition (MOCVD) in a two-step growth process is investigated. The characteristics of A1N epilayers are analyzed by using triple-axis crystal X-ray diffraction (XRD) and atomic force microscopy (AFM). It is shown that the crystal quality of the A1N epilayer is closely related to its correlation length. The correlation length is determined by the thickness of the initially grown HT-A1N buffer layer. We find that the optimal HT-A1N buffer thickness for obtaining a high-quality A1N epilayer grown on sapphire substrate is about 20 nm.
基金financially supported by the National Natural Science Foundation of China (No. 60777022)the Fundamental Research Funds for the Central Universities
文摘InAs0.052Sb0.948 epilayers with cutoff wavelengths longer than 8 μm were successfully grown on InAs substrates using melt epitaxy (ME). Scanning electron microscopy observations show that the interface between the epilayers and substrates is flat, indicating the good quality of the epilayers, and the thickness of the epilayers is 40 μm. Photoconductors were fabricated using InAs0.052Sb0.948 thick epilayers grown by ME. Ge optical lenses were set on the photoconductors. At room temperature, the photoresponse wavelength range was 2-10μm. The peak detectivity Dλp reached 5.4 × 10^9 cm-Hz^1/2.W^-1 for the immersed detectors. The detectivity D^* was 9.3 × 10^8 and 1.3 × 10^8 cm.Hz^1/2.W^-1 at the wavelength of 8 and 9 μm, respectively. The good performance of the uncooled InAsSb detectors was experimentally validated.
基金Supported by the National Key R&D Program of China under Grant No 2016YFB0400200
文摘We study the effect of the AlGaN interlayer on structural quality and strain engineering of the GaN films grown on SiC substrates with an AlN buffer layer, hnproved structural quality and tensile stress releasing are realized in unintentionally doped GaN thin films grown on 6H-SiC substrates by metal organic chemical vapor deposition. Using the optimized AlGaN interlayer, we find that the full width at half maximum of x-ray diffraction peaks for GaN decreases dramatically, indicating an improved crystalline quality. Meanwhile, it is revealed that the biaxial tensile stress in the GaN film is significantly reduced from the Raman results. Photoluminescence spectra exhibit a shift of the peak position of the near-band-edge emission, as well as the integrated intensity ratio variation of the near-band-edge emission to the yellow luminescence band. Thus by optimizing the AlGaN interlayer, we could acquire the high-quality and strain-relaxation GaN epilayer with large thickness on SiC substrates.
基金Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120131110006)the Key Science and Technology Program of Shandong Province+10 种基金China(Grant No.2013GGX10221)the Key Laboratory of Functional Crystal Materials and Device(Shandong UniversityMinistry of Education)China(Grant No.JG1401)the National Natural Science Foundation of China(Grant No.61306113)the Major Research Plan of the National Natural Science Foundation of China(Grant No.91433112)the Partnership Project for Fundamental Technology Researches of the Ministry of EducationCultureSportsScience and TechnologyJapan
文摘Excitation power and temperature-dependent photoluminescence(PL) spectra of the ZnTe epilayer grown on(100)Ga As substrate and ZnTe bulk crystal are investigated. The measurement results show that both the structures are of good structural quality due to their sharp bound excitonic emissions and absence of the deep level structural defect-related emissions. Furthermore, in contrast to the ZnTe bulk crystal, although excitonic emissions for the ZnTe epilayer are somewhat weak, perhaps due to As atoms diffusing from the Ga As substrate into the ZnTe epilayer and/or because of the strain-induced degradation of the crystalline quality of the ZnTe epilayer, neither the donor–acceptor pair(DAP) nor conduction band-acceptor(e–A) emissions are observed in the ZnTe epilayer. This indicates that by further optimizing the growth process it is possible to obtain a high-crystalline quality ZnTe heteroepitaxial layer that is comparable to the ZnTe bulk crystal.
基金supported by the National Natural Science Foundation of China (Grand No. 60876003)the Program of 2011 (2nd)Innovative Research Teams and Leading Talents in Guangdong Province of China
文摘The infrared reflectance spectra of both 4H SiC substrates and epilayers are measured in a wave number range from 400 cm 1 to 4000 cm-1 using a Fourier-transform spectrometer. The thicknesses of the 4H-SiC epilayers and the electrical properties, including the free-carrier concentrations and the mobilities of both the 4H SiC substrates and the epilayers, are characterized through full line-shape fitting analyses. The correlations of the theoretical spectral profiles with the 4H-SiC electrical properties in the 30 cm-1-4000 cm 1 and 400 cm-1-4000 cm-1 spectral regions are established by introducing a parameter defined as error quadratic sum. It is indicated that their correlations become stronger at a higher carrier concentration and in a wider spectral region (30 cm-1-4000 cm-1). These results suggest that the infrared reflectance technique can be used to accurately determine the thicknesses of the epilayers and the carrier concentrations, and the mobilities of both lightly and heavily doped 4H-SiC wafers.
基金Acknowledgements This work was supported by the Starting Research Fund from the Jianghan University (Nos. 2010014 and 2012017), the National Natural Science Foundation of China (Grant Nos. 61006046 and 51002058).
文摘This paper reported a simple and effective method for fabricating and patterning highly ordered ZnO nanorod arrays on H2-decomposed GaN epilayer via hydrothermal route. The edge of pattern, which has been decomposed by H2 flow, provides appropriate nucleation sites for the selective-growth of aligned ZnO nanorods. The density of ZnO nanorod arrays assembled the hexagonal pattern can be tuned by varying the solution concentrations, growth time and reaction temperatures. The results have demonstrated that the ZnO nanorods are highly uniform in diameter and height with perfect alignment and are epitaxially grown along [0001] direc- tion. This work provides a novel and accessible route to prepare oriented and aligned ZnO nanorod arrays pattern. And the aligned ZnO nanorods form an ideal hexagonal pattern that might be used in many potential applications of ZnO nanomaterials.
文摘Contacting mode atomic force microscopy (AFM) is used to measure the In 0.35 Ga 0.65 As/GaAs epilayer grown at low temperature (460℃).Unlike the normal layer by layer growth (FvdM mode) or self organized islands growth (SK mode),samples grown under 460℃ are found to be large islands with atomic thick terraces.AFM measurements reveale near one monolayer high steps.This kind of growth is good between FvdM and SK growth modes and can be used to understand the evolution of strained epitaxy from FvdM to SK mode.
文摘Low pressure MOCVD has been used to investigate the properties of low temperature buffer layer deposition conditions and their influence on the properties of high temperature GaN epilayers grown subsequently. It is found that the surface morphology of the as grown buffer layer after thermal annealing at 1 030 ℃ and 1 050 ℃ depends strongly on the thickness of the buffer layer. In particular when a thick buffer layer is used, large trapezoidal nuclei are formed after annealing.
文摘The properties of GaSb substrates commonly used for the preparation of Ⅲ Ⅴ antimonide epilayers were studied before and after growing GaInAsSb multi layers by MOCVD using PL, FTIR and DCXD together with the electrical properties and EPD values. The correlation between the substrate qualities and epilayer properties was briefly discussed. The good property epilayers of GaInAsSb and, then, the high performance of 2.3 μm photodetectors were achieved only when the good quality GaSb wafers was used as the substrates.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFB2200103)the National Natural Science Foundation of China(Grant No.61474094)Principal Fund of Minnan Normal University(Grant No.KJ2020006).
文摘A near-infrared germanium(Ge)Schottky photodetector(PD)with an ultrathin silicon(Si)barrier enhancement layer between the indium-doped tin oxide(ITO)electrode and Ge epilayer on Si or silicon-on-insulator(SOI)is proposed and fabricated.The well-behaved ITO/Si cap/Ge Schottky junctions without intentional doping process for the Ge epilayer are formed on the Si and SOI substrates.The Si-and SOI-based ITO/Si cap/Ge Schottky PDs exhibit low dark current densities of 33 mA/cm2 and 44 mA/cm2,respectively.Benefited from the high transmissivity of ITO electrode and the reflectivity of SOI substrate,an optical responsivity of 0.19 A/W at 1550 nm wavelength is obtained for the SOI-based ITO/Si cap/Ge Schottky PD.These complementary metal–oxide–semiconductor(CMOS)compatible Si(or SOI)-based ITO/Si cap/Ge Schottky PDs are quite useful for detecting near-infrared wavelengths with high efficiency.
基金Project supported by the National Natural Science Foundation of China(No.60806001)the National High Technology Research and Development Program of China(No.2011AA03A103)the National Basic Research Program of China(No.2011CB301904)
文摘InAlN epilayers were grown on high quality GaN and A1N templates with the same growth parameters. Measurement results showed that two samples had the same In content of~16%,while the crystal quality and surface topography of the InAlN epilayer grown on the AlN template,with 282.3"(002) full width at half maximum (FWHM) of rocking curve,313.5"(102) FWHM,surface roughness of 0.39 nm and V-pit density of 2.8×10~8 cm^(-2),were better than that of the InAlN epilayer grown on the GaN template,309.3",339.1",0.593 nm and 4.2×10~8 cm^(-2).A primary conclusion was proposed that both the crystal quality and the surface topography of the InAlN epilayer grown on the AlN template were better than that of the InAlN epilayer grown on the GaN template. Therefore,the AlN template was a better choice than the GaN template for getting high quality InAlN epilayers.
文摘In this paper,1 μm n-GaN was grown by using varied and fixed ammonia flow (NH3) on SiNx mask layer on Si(111) substrate using metal organic chemical vapor deposition (MOCVD). In-situ optical reflectivity traces of GaN growth show that the three-to two-dimensional process has been prolonged by using varied ammonia flow on SiNx mask layer method compared with that grown by fixing ammonia flow. Structural and optical properties were characterized by high-resolution X-ray diffraction and photolu-minescence,and compared with the sample grown by fixing ammonia flow,GaN grown using the varied ammonia flow on SiNx mask layer showed better structure and optical quality. It was assumed that the low NH3 flow in the initial growth stage considerably increased the GaN island density on the nano-porous SiNx layer by enhancing vertical growth. Lateral growth was significantly favored by high NH3 flow in the subsequent step. As a result,the improved crystal and optical quality was achieved utilizing NH3 flow modulation for GaN buffer growth on Si(111) substrate.
基金Project supported by the National Natural Science Foundation of China(No.61076004)the Natural Science Foundation of Hebei Province,China(No.E2009000050)
文摘The growth by molecular beam epitaxy of high quality GaAs epilayers on nonmisoriented GaAs(111)B substrates is reported.Growth control of the GaAs epilayers is achieved via in situ,real time measurement of the specular beam intensity of reflection high-energy electron diffraction(RHEED).Static surface phase maps of GaAs(111)B have been generated for a variety of incident As flux and substrate temperature conditions.The dependence of GaAs(111)B surface reconstruction phases on growth parameters is discussed.The(191/2×191/2) surface reconstruction is identified to be the optimum starting surface for the latter growth of mirror-smooth epilayers.Regimes of growth conditions are optimized in terms of the static surface phase diagram and the temporal RHEED intensity oscillations.
基金supported by the National High Technology R&D Program of China(No.2014AA041402)the National Natural Science Foundation of China(Nos.61474113,61274007,61574140)+2 种基金the Beijing Natural Science Foundation of China(Nos.4132076,4132074)the Program of State Grid Smart Grid Research Institute(No.SGRI-WD-71-14-004)the Youth Innovation Promotion Association of CAS
文摘Chloride-based fast homoepitaxial growth of 4H-SiC epilayers was performed on 4° off-axis 4H-SiC substrates in a home-made vertical hot-wall chemical vapor deposition(CVD) system using H2-SiH4-C2H4-HCl.The effect of the SiH_4/H_2 ratio and reactor pressure on the growth rate of 4H-SiC epilayers has been studied successively.The growth rate increase in proportion to the SiH_4/H_2 ratio and the influence mechanism of chlorine has been investigated.With the reactor pressure increasing from 40 to 100 Torr,the growth rate increased to 52μm/h and then decreased to 47 μm/h,which is due to the joint effect of H_2 and HC1 etching as well as the formation of Si clusters at higher reactor pressure.The surface root mean square(RMS) roughness keeps around 1 nm with the growth rate increasing to 49 μm/h.The scanning electron microscope(SEM),Raman spectroscopy and X-ray diffraction(XRD) demonstrate that 96.7 μm thick 4H-SiC layers of good uniformity in thickness and doping with high crystal quality can be achieved.These results prove that chloride-based fast epitaxy is an advanced growth technique for 4H-SiC homoepitaxy.