树高是监测森林状况的重要参数,摄影测量法具有低成本、灵活的特性,是树高采集的重要方法之一.作为一种被动遥感方式,传统的摄影测量方法往往需要数量较多,重叠率较高的图像数据,这与传统图像特征的稀疏性有关.为了提高图像数量受限条...树高是监测森林状况的重要参数,摄影测量法具有低成本、灵活的特性,是树高采集的重要方法之一.作为一种被动遥感方式,传统的摄影测量方法往往需要数量较多,重叠率较高的图像数据,这与传统图像特征的稀疏性有关.为了提高图像数量受限条件下的树高提取精度,提出将稀疏特征匹配和稠密像素匹配相结合,并使用对极约束过滤外点的方法,得到稠密且精度较高的匹配结果,并通过三维重建算法得到森林场景点云.该方法在少量图像的情况下就可以较为完整地重建森林场景并提取树高,将提取的树高与机载激光雷达(light detection and ranging,LiDAR)点云的结果进行对比,相关系数为0.91,最大误差为1.64 m.该算法只需要少量的重叠图像,这表明了该算法在处理高分辨率卫星图像方面具有一定潜力.展开更多
目的移动智能体在执行同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)的复杂任务时,动态物体的干扰会导致特征点间的关联减弱,系统定位精度下降,为此提出一种面向室内动态场景下基于YOLOv5和几何约束的视觉SLAM算法...目的移动智能体在执行同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)的复杂任务时,动态物体的干扰会导致特征点间的关联减弱,系统定位精度下降,为此提出一种面向室内动态场景下基于YOLOv5和几何约束的视觉SLAM算法。方法首先,以YOLOv5s为基础,将原有的CSPDarknet主干网络替换成轻量级的MobileNetV3网络,可以减少参数、加快运行速度,同时与ORB-SLAM2系统相结合,在提取ORB特征点的同时获取语义信息,并剔除先验的动态特征点。然后,结合光流法和对极几何约束对可能残存的动态特征点进一步剔除。最后,仅用静态特征点对相机位姿进行估计。结果在TUM数据集上的实验结果表明,与ORB-SLAM2相比,在高动态序列下的ATE和RPE都减少了90%以上,与DS-SLAM、Dyna-SLAM同类型系统相比,在保证定位精度和鲁棒性的同时,跟踪线程中处理一帧图像平均只需28.26 ms。结论该算法能够有效降低动态物体对实时SLAM过程造成的干扰,为实现更加智能化、自动化的包装流程提供了可能。展开更多
文摘树高是监测森林状况的重要参数,摄影测量法具有低成本、灵活的特性,是树高采集的重要方法之一.作为一种被动遥感方式,传统的摄影测量方法往往需要数量较多,重叠率较高的图像数据,这与传统图像特征的稀疏性有关.为了提高图像数量受限条件下的树高提取精度,提出将稀疏特征匹配和稠密像素匹配相结合,并使用对极约束过滤外点的方法,得到稠密且精度较高的匹配结果,并通过三维重建算法得到森林场景点云.该方法在少量图像的情况下就可以较为完整地重建森林场景并提取树高,将提取的树高与机载激光雷达(light detection and ranging,LiDAR)点云的结果进行对比,相关系数为0.91,最大误差为1.64 m.该算法只需要少量的重叠图像,这表明了该算法在处理高分辨率卫星图像方面具有一定潜力.
文摘目的移动智能体在执行同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)的复杂任务时,动态物体的干扰会导致特征点间的关联减弱,系统定位精度下降,为此提出一种面向室内动态场景下基于YOLOv5和几何约束的视觉SLAM算法。方法首先,以YOLOv5s为基础,将原有的CSPDarknet主干网络替换成轻量级的MobileNetV3网络,可以减少参数、加快运行速度,同时与ORB-SLAM2系统相结合,在提取ORB特征点的同时获取语义信息,并剔除先验的动态特征点。然后,结合光流法和对极几何约束对可能残存的动态特征点进一步剔除。最后,仅用静态特征点对相机位姿进行估计。结果在TUM数据集上的实验结果表明,与ORB-SLAM2相比,在高动态序列下的ATE和RPE都减少了90%以上,与DS-SLAM、Dyna-SLAM同类型系统相比,在保证定位精度和鲁棒性的同时,跟踪线程中处理一帧图像平均只需28.26 ms。结论该算法能够有效降低动态物体对实时SLAM过程造成的干扰,为实现更加智能化、自动化的包装流程提供了可能。