Recently,flexible oxide epitaxial thin films are of increasing interests owing to their excellent physical properties and wide applications.The oxide epitaxial thin films with flexible,lightweight and wearable are pro...Recently,flexible oxide epitaxial thin films are of increasing interests owing to their excellent physical properties and wide applications.The oxide epitaxial thin films with flexible,lightweight and wearable are promising for the applications in flexible and wearable devices,such as flexible sensors,flexible detectors,flexible oscillators,flexible spintronics,wearable displays and electronic skin,etc.This review aims to summarize the fabrication,physical properties and applications of the flexible oxide epitaxial thin films for wearable electronics in most recent few years.The fabrication of flexible oxide epitaxial thin films reviewed here mainly includes the deposition on flexible substrates at high temperature and epitaxial lift-off(ELO)from rigid substrates.The physical properties and applications of flexible oxide epitaxial thin films reviewed here chiefly focus on the area of electricity and magnetism,including stable and tunable physical properties in the flexible oxide epitaxial thin films.In final,the perspectives and challenges of flexible oxide thin films for wearable electronics have been also addressed.展开更多
Spinel (O01)-orientated Mn304 thin films on Nb-doped SrTi03 (001) substrates are fabricated via the pulsed laser deposition method. X-ray diffraction and high-resolution transmission electron microscopy indicate t...Spinel (O01)-orientated Mn304 thin films on Nb-doped SrTi03 (001) substrates are fabricated via the pulsed laser deposition method. X-ray diffraction and high-resolution transmission electron microscopy indicate that the as-prepared epitaxial fihn is well crystaiHzed. In the film plane the orientation relationship between the film and the substrate is [lOOjMn3 04 ||[110] Nb-doped SrTiO3. After an electroforming process, the film shows bipolar nonvolatile resistance switching behavior. The positive voltage bias drives the sample into a low resistance state, while the negative voltage switches it back to a high resistance state. The switching polarity is different from the previous studies. The complex impedance measurement suggests that the resistance switching behavior is of filament type. Due to the performance reproducibility and state stability, Mn3O4 might be a promising candidate for the resistive random access memory devices.展开更多
Al-doped ZnO(AZO) thin films were grown on c-sapphire substrates by laser ablation under different oxygen partial pressures(P_(O2)).The effect of P_(O2) on the crystal structure,preferred orientation as well a...Al-doped ZnO(AZO) thin films were grown on c-sapphire substrates by laser ablation under different oxygen partial pressures(P_(O2)).The effect of P_(O2) on the crystal structure,preferred orientation as well as the electrical and optical properties of the films was investigated.The structure characterizations indicated that the as-grown films were single-phased with a wurtzite ZnO structure,showing a significant c-axis orientation.The films were well crystallized and exhibited better crystallinity and denser texture when deposited at higher P_(O2).At the optimum oxygen partial pressures of 10- 15 Pa,the AZO thin films were epitaxially grown on c-sapphire substrates with the(0001) plane parallel to the substrate surface,i e,the epitaxial relationship was AZO(000 1) // A1_2O_3(000 1).With increasing P_(O2),the value of Hall carrier mobility was increased remarkably while that of carrier concentration was decreased slightly,which led to an enhancement in electrical conductivity of the AZO thin films.All the films were highly transparent with an optical transmittance higher than 85%.展开更多
By means of oxide molecular beam epitaxy with shutter-growth mode, we fabricate a series of electron-doped (Sr1-xLax)2IrO4 (001) (x=0, 0.05, 0.1 and 0.15) single crystalline thin films and then investigate the d...By means of oxide molecular beam epitaxy with shutter-growth mode, we fabricate a series of electron-doped (Sr1-xLax)2IrO4 (001) (x=0, 0.05, 0.1 and 0.15) single crystalline thin films and then investigate the doping dependence of the electronic structure utilizing in-situ angle-resolved photoemission spectroscopy. It is found that with the increasing doping content, the Fermi levels of samples progressively shift upward. Prominently, an extra electron pocket crossing the Fermi level around the M point is evidently observed in the 15% nominal doping sample. Moreover, bulk-sensitive transport measurements confirm that the doping effectively suppresses the insulating state with respect to the as-grown Sr2IrO4, though the doped samples still remain insulating at low temperatures due to the localization effect possibly stemming from disorders including oxygen deficiencies. Our work provides another feasible doping method to tune electronic structure of Sr2 IrO4.展开更多
The discovery of nickelate superconductors,including doped infinite-layer(IL)nickelates RNiO2(R=La,Pr,Nd),layered square-planar nickelate Nd6Ni5O12,and the Ruddlesden–Popper(RP)phase La3Ni2O7,has spurred immense inte...The discovery of nickelate superconductors,including doped infinite-layer(IL)nickelates RNiO2(R=La,Pr,Nd),layered square-planar nickelate Nd6Ni5O12,and the Ruddlesden–Popper(RP)phase La3Ni2O7,has spurred immense interest in fundamental research and potential applications.Scanning transmission electron microscopy(STEM)has proven crucial for understanding structure–property correlations in these diverse nickelate superconducting systems.In this review,we summarize the key findings from various modes of STEM,elucidating the mechanism of different nickelate superconductors.We also discuss future perspectives on emerging STEM techniques for unraveling the pairing mechanism in the“nickel age”of superconductivity.展开更多
Understanding how defect chemistry of oxide material influences the thermal stability of noble metal dopant ions plays an important role in designing high-performance heterogeneous catalytic systems.Here we use in-sit...Understanding how defect chemistry of oxide material influences the thermal stability of noble metal dopant ions plays an important role in designing high-performance heterogeneous catalytic systems.Here we use in-situ ambient-pressure X-ray photoemission spectroscopy(APXPS)to experimentally determine the role of grain boundary in the thermal stability of platinum doped cerium oxide(Pt/CeO_(2)).The grain boundaries were introduced in Pt/CeO_(2)thin films by pulsed laser deposition without significantly change of the surface microstructure.The defect level was tuned by the strain field obtained using a highly/low mismatched substrate.The Pt/CeO_(2)thin film models having well defined crystallographic properties but different grain boundary structural defect levels provide an ideal platform for exploring the evolution of Pt–O–Ce bond with changing the temperature in reducing conditions.We have direct demonstration and explanation of the role of Ce^(3+)induced by grain boundaries in enhancing Pt2+stability.We observe that the Pt^(2+)–O–Ce^(3+)bond provides an ideal coordinated site for anchoring of Pt^(2+)ions and limits the further formation of oxygen vacancies during the reduction with H_(2).Our findings demonstrate the importance of grain boundary in the atomic-scale design of thermally stable catalytic active sites.展开更多
Mixed-valance manganites with strong electron correlation exhibit strong potential for spintronics,where emergent magnetic behaviors,such as propagation of high-frequency spin waves and giant topological Hall Effects ...Mixed-valance manganites with strong electron correlation exhibit strong potential for spintronics,where emergent magnetic behaviors,such as propagation of high-frequency spin waves and giant topological Hall Effects can be driven by their mesoscale spin textures.Here,we create magnetic vortex clusters with flux closure spin configurations in single-crystal La0.67Sr0.33MnO3 wire.A distinctive transformation from out-of-plane domains to a vortex state is directly visualized using magnetic force microscopy at 4 K in wires when the width is below 1.0μm.The phase-field modeling indicates that the inhomogeneous strain,accompanying with shape anisotropy,plays a key role for stabilizing the flux-closure spin structure.This work offers a new perspective for understanding and manipulating the non-trivial spin textures in strongly correlated systems.展开更多
基金supported by the National Science Foundation of China(No.61631166004)Shenzhen KQTD project(No.KQTD20180411143514543)+1 种基金Shenzhen JCYJ project(No.JCYJ20180504165831308)and Shenzhen DRC project[2018]1433partially supported by Doctoral Scientific Research Startup Foundation of Shaanxi University of Science and Technology(No.2019BJ-30).
文摘Recently,flexible oxide epitaxial thin films are of increasing interests owing to their excellent physical properties and wide applications.The oxide epitaxial thin films with flexible,lightweight and wearable are promising for the applications in flexible and wearable devices,such as flexible sensors,flexible detectors,flexible oscillators,flexible spintronics,wearable displays and electronic skin,etc.This review aims to summarize the fabrication,physical properties and applications of the flexible oxide epitaxial thin films for wearable electronics in most recent few years.The fabrication of flexible oxide epitaxial thin films reviewed here mainly includes the deposition on flexible substrates at high temperature and epitaxial lift-off(ELO)from rigid substrates.The physical properties and applications of flexible oxide epitaxial thin films reviewed here chiefly focus on the area of electricity and magnetism,including stable and tunable physical properties in the flexible oxide epitaxial thin films.In final,the perspectives and challenges of flexible oxide thin films for wearable electronics have been also addressed.
基金Supported by the National Basic Research Program of China under Grant Nos 2011CB921904 and 2012CB927402the National Natural Science Foundation of China under Grant Nos 11074142 and 11021464the Key Project of the Ministry of Education of China under Grant No 309003
文摘Spinel (O01)-orientated Mn304 thin films on Nb-doped SrTi03 (001) substrates are fabricated via the pulsed laser deposition method. X-ray diffraction and high-resolution transmission electron microscopy indicate that the as-prepared epitaxial fihn is well crystaiHzed. In the film plane the orientation relationship between the film and the substrate is [lOOjMn3 04 ||[110] Nb-doped SrTiO3. After an electroforming process, the film shows bipolar nonvolatile resistance switching behavior. The positive voltage bias drives the sample into a low resistance state, while the negative voltage switches it back to a high resistance state. The switching polarity is different from the previous studies. The complex impedance measurement suggests that the resistance switching behavior is of filament type. Due to the performance reproducibility and state stability, Mn3O4 might be a promising candidate for the resistive random access memory devices.
基金Funded by National Natural Science Foundation of China(Nos.51272195,51521001)111 project(No.B13035)+1 种基金Hubei Provincial National Natural Science Foundation(No.2015CFB724)Fundamental Research Funds for the Central Universities(Nos.2013-ZD-4,2014-KF-3)
文摘Al-doped ZnO(AZO) thin films were grown on c-sapphire substrates by laser ablation under different oxygen partial pressures(P_(O2)).The effect of P_(O2) on the crystal structure,preferred orientation as well as the electrical and optical properties of the films was investigated.The structure characterizations indicated that the as-grown films were single-phased with a wurtzite ZnO structure,showing a significant c-axis orientation.The films were well crystallized and exhibited better crystallinity and denser texture when deposited at higher P_(O2).At the optimum oxygen partial pressures of 10- 15 Pa,the AZO thin films were epitaxially grown on c-sapphire substrates with the(0001) plane parallel to the substrate surface,i e,the epitaxial relationship was AZO(000 1) // A1_2O_3(000 1).With increasing P_(O2),the value of Hall carrier mobility was increased remarkably while that of carrier concentration was decreased slightly,which led to an enhancement in electrical conductivity of the AZO thin films.All the films were highly transparent with an optical transmittance higher than 85%.
基金Supported by the National Basic Research Program of China(973 Program)under Grant Nos 2011CBA00106 and2012CB927400the National Natural Science Foundation of China under Grant Nos 11274332 and 11227902Helmholtz Association through the Virtual Institute for Topological Insulators(VITI).M.Y.Li and D.W.Shen are also supported by the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB04040300
文摘By means of oxide molecular beam epitaxy with shutter-growth mode, we fabricate a series of electron-doped (Sr1-xLax)2IrO4 (001) (x=0, 0.05, 0.1 and 0.15) single crystalline thin films and then investigate the doping dependence of the electronic structure utilizing in-situ angle-resolved photoemission spectroscopy. It is found that with the increasing doping content, the Fermi levels of samples progressively shift upward. Prominently, an extra electron pocket crossing the Fermi level around the M point is evidently observed in the 15% nominal doping sample. Moreover, bulk-sensitive transport measurements confirm that the doping effectively suppresses the insulating state with respect to the as-grown Sr2IrO4, though the doped samples still remain insulating at low temperatures due to the localization effect possibly stemming from disorders including oxygen deficiencies. Our work provides another feasible doping method to tune electronic structure of Sr2 IrO4.
基金the insightful discussions with Prof.Dongsheng Song.Project supported by the National Natural Science Foundation of China(Grant No.52172115)the Guangdong Provincial Key Laboratory Program from the Department of Science and Technology of Guangdong Province(Grant No.2021B1212040001)+2 种基金Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515012434)Shenzhen Science and Technology Program(Grant No.20231121093057002)Natural Science Foundation of Guangdong Province,China(Grant No.2022A1515010762).
文摘The discovery of nickelate superconductors,including doped infinite-layer(IL)nickelates RNiO2(R=La,Pr,Nd),layered square-planar nickelate Nd6Ni5O12,and the Ruddlesden–Popper(RP)phase La3Ni2O7,has spurred immense interest in fundamental research and potential applications.Scanning transmission electron microscopy(STEM)has proven crucial for understanding structure–property correlations in these diverse nickelate superconducting systems.In this review,we summarize the key findings from various modes of STEM,elucidating the mechanism of different nickelate superconductors.We also discuss future perspectives on emerging STEM techniques for unraveling the pairing mechanism in the“nickel age”of superconductivity.
基金The APXPS experiments were performed at BL02B01 of SSRF with the approval of the Proposal Assessing Committee of SiP.ME2 platform project(Proposal No.2019-SSRF-PT-011613)the Natural Science Foundation of China(No.11227902)the Shanghai Key Research Program(No.20ZR1436700).
文摘Understanding how defect chemistry of oxide material influences the thermal stability of noble metal dopant ions plays an important role in designing high-performance heterogeneous catalytic systems.Here we use in-situ ambient-pressure X-ray photoemission spectroscopy(APXPS)to experimentally determine the role of grain boundary in the thermal stability of platinum doped cerium oxide(Pt/CeO_(2)).The grain boundaries were introduced in Pt/CeO_(2)thin films by pulsed laser deposition without significantly change of the surface microstructure.The defect level was tuned by the strain field obtained using a highly/low mismatched substrate.The Pt/CeO_(2)thin film models having well defined crystallographic properties but different grain boundary structural defect levels provide an ideal platform for exploring the evolution of Pt–O–Ce bond with changing the temperature in reducing conditions.We have direct demonstration and explanation of the role of Ce^(3+)induced by grain boundaries in enhancing Pt2+stability.We observe that the Pt^(2+)–O–Ce^(3+)bond provides an ideal coordinated site for anchoring of Pt^(2+)ions and limits the further formation of oxygen vacancies during the reduction with H_(2).Our findings demonstrate the importance of grain boundary in the atomic-scale design of thermally stable catalytic active sites.
基金supported by the National Key Research and Development Program of China(2016YFA0302300)the Beijing Natural Science Foundation(Z190008)+9 种基金the National Natural Science Foundation of China(11974052 and 11474024)the Beamline 1W1A of the Beijing Synchrotron Radiation Facilitythe National Natural Science Foundation of China(11604011)Beijing Institute of Technology Research Fund Program for Young Scholarsthe National Natural Science Foundation of China(11672264 and 11621062)support by the German Research Foundation DFG SFB TRR173 Spin+X,project KL1811/18the Graduate School of Excellence Materials Science in Mainz(GSC266)Peking University was supported by the National Key R&D Program of China(2016YFA0300804)the National Natural Science Foundation of China(11974023 and 51672007)the Key R&D Program of Guangdong Province(2018B030327001 and 2018B010109009).
文摘Mixed-valance manganites with strong electron correlation exhibit strong potential for spintronics,where emergent magnetic behaviors,such as propagation of high-frequency spin waves and giant topological Hall Effects can be driven by their mesoscale spin textures.Here,we create magnetic vortex clusters with flux closure spin configurations in single-crystal La0.67Sr0.33MnO3 wire.A distinctive transformation from out-of-plane domains to a vortex state is directly visualized using magnetic force microscopy at 4 K in wires when the width is below 1.0μm.The phase-field modeling indicates that the inhomogeneous strain,accompanying with shape anisotropy,plays a key role for stabilizing the flux-closure spin structure.This work offers a new perspective for understanding and manipulating the non-trivial spin textures in strongly correlated systems.