Au sites supported on Ti-containing materials(Au/Ti-containing catalyst)are currently considered as a promising catalyst for the propylene epoxidation owing to the synergistic effect that hydrogen peroxide species for...Au sites supported on Ti-containing materials(Au/Ti-containing catalyst)are currently considered as a promising catalyst for the propylene epoxidation owing to the synergistic effect that hydrogen peroxide species formed on Au sites diffuses to the Ti sites to form the Ti-hydroperoxo intermedi-ates and contributes to the formation of propylene oxide(PO).In principle,thermal treatment will significantly affect the chemical and physical structures of Ti-containing materials.Consequently,the synergy between tailored Ti sites with different surface properties and Au sites is highly expected to enhance the catalytic performance for the reaction.Herein,we systematically studied the intrinsic effects of different microenvironments around Ti sites on the PO adsorption/desorption and conversion,and then effectively improved the catalytic performance by tailoring the number of surface hydroxyl groups.The Ti^(Ⅵ) material with fewer hydroxyls stimulates a remarkable enhancement in PO selectivity and H_(2) efficiency compared to the Ti^(Ⅵ) material that possessed more hydroxyls,offering a 7-fold and 4-fold increase,respectively.As expected,the Ti^(Ⅵ+Ⅳ) and Ti^(Ⅳ) materials also exhibit a similar phenomenon to the Ti^(Ⅵ) materials through the same thermal treatment,which strongly supports that the Ti sites microenvironment is an important factor in suppressing PO con-version and enhancing catalytic performance.These insights could provide guidance for the rational preparation and optimization of Ti-containing materials synergizing with Au catalysts for propylene epoxidation.展开更多
The heterogeneously copper-catalyzed oxidative cleavage of styrene was studied using copper-doped mesoporous KIT-6(CU-KIT-6_x) prepared via pH adjustment(where x is the pH:1.43,2.27,3.78,3.97,4.24 or 6.62).Variat...The heterogeneously copper-catalyzed oxidative cleavage of styrene was studied using copper-doped mesoporous KIT-6(CU-KIT-6_x) prepared via pH adjustment(where x is the pH:1.43,2.27,3.78,3.97,4.24 or 6.62).Variations in the catalyst structure and morphology with pH values were characterized by X-ray power diffraction,nitrogen adsorption-desorption analysis,transmission electron microscopy and X-ray photoelectron spectroscopy.As the pH value applied during the initial synthesis,the resulting Cu-KIT-6_x exhibited different structural,textural and surface characteristics,especially in terms of specific copper species and copper content At a pH value of 3.78,approximately 4.6 wt%copper(Ⅱ) was successfully incorporated into the framework of the initial KIT-6,in the form of-Cu-O-Si- groups.The catalytic performance of each catalyst was evaluated by following the epoxidation of styrene,employing tert-butyl hydroperoxide as the oxidant and CH_3CN as the solvent.A significant styrene conversion of 43.5%with 86.6%selectivity for the desired styrene epoxide was obtained over the Cu-KIT-63.78.A higher Cu content,an ordered cubic laid mesoporous architecture and various specific textural characteristics all combined to endow the Cu-KIT-63.78 with high catalytic activity and good stability.展开更多
The catalytic epoxidation of olefin was investigated on two copper complex-modified molybdenum oxides with a 3D supramolecular structure, [Cu(bipy)]4[Mo15O47].2H2O (1) and [Cu1(bix)][(Cu1bix) (δ-MoVl8O26)0....The catalytic epoxidation of olefin was investigated on two copper complex-modified molybdenum oxides with a 3D supramolecular structure, [Cu(bipy)]4[Mo15O47].2H2O (1) and [Cu1(bix)][(Cu1bix) (δ-MoVl8O26)0.5] (2) (bipy = 4,4'-bipyridine, bix = 1,4-bis(imidazole-1-ylmethyl)benzene). Both compounds were catalytically active and stable for the epoxidation of cyclooctene, 1-octene, and styrene with tert-butyl hydroperoxide (t-BuOOH) as oxidant. The excellent catalytic performance was attributed to the presence of stable coordination bonds between the molybdenum oxide and copper complex, which resulted in the formation of easily accessible Mo species with high electropositivity. In addition, the copper complex also acted as an active site for the activation of t-BuOOH, thus im- proving these copper complex-modified polyoxometalates.展开更多
The dioxygen affinities and catalytic epoxidation performance of transition-metal hydroxamates were investigated for the first time. The effects of substituents on these properties were also discussed in the paper.
Titanium silicalite-1(TS-1) was synthesized by a hydrothermal synthesis method with different amounts of tetrapropyl ammonium hydroxide(TPAOH) as template.The as-prepared TS-1 was characterized by scanning electron mi...Titanium silicalite-1(TS-1) was synthesized by a hydrothermal synthesis method with different amounts of tetrapropyl ammonium hydroxide(TPAOH) as template.The as-prepared TS-1 was characterized by scanning electron microscopy,X-ray powder diffraction,Fourier-transform infrared resonance spectroscopy,ultravioletvisible diffuse reflectance spectroscopy and nitrogen physical adsorption and desorption,and studied in the propylene epoxidation with hydrogen peroxide in a fixed bed reactor.The results showed that the amount of TPAOH had a strong influence on the grain morphology,the amount of framework Ti,and the average particle sizes of TS-1.With the increase of TPAOH amount in the synthesis(the molar ratio of TPAOH/SiO_2 increasing from 0.25 to 0.45),the morphology changed gradually from ellipsoids to cubes,the particle sizes of TS-1 decreased slightly,the amount of the framework Ti increased appreciably,and the catalytic stability in the propylene epoxidation increased markedly.Moreover,all the catalysts had the same selectivity to propylene epoxide.However,when the molar ratio of TPAOH/SiO_2 was further increased to 0.55,the particles became large hexagons with the size distribution in a wide range,and the catalytic stability decreased sharply although the amount of the framework Ti increased further,which can be attributed to the long diffusion paths of the reactants in the zeolite.展开更多
Gold catalysts supported on SiO2, TiO2, TiO2-SiO2, and ZrO2-SiO2 supports were prepared by impregnating each support with a basic solution of tetrachloroauric acid. X-ray diffraction (XRD), transmission electron mic...Gold catalysts supported on SiO2, TiO2, TiO2-SiO2, and ZrO2-SiO2 supports were prepared by impregnating each support with a basic solution of tetrachloroauric acid. X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques were used to characterize their structure and surface composition. The results indicated that the size of gold particles could be controlled to below 10 nm by this method of preparation. Washing gold catalysts with water could markedly enhance the dispersion of metallic gold particles on the surface, but it could not completely remove the chloride ions left on the surface. The catalytic performance of direct vapor-phase epoxidation of propylene using air as an oxidant over these catalysts was evaluated at atmospheric pressure. The selectivity to propylene oxide (PO) was found to vary with reaction time on the stream. At the reaction conditions of atmosphere pressure, temperature 325 ℃, feed gas ratio V(C3H6)/V(O2)= 1/2, and GHSV =6000h^-1, 17.9% PO selectivity with 0.9% propylene conversion were obtained at initial 10 min for Au/SiO2 catalyst. After reacting 60 min only 8.9% PO selectivity were detected, but the propylene conversion rises to 1.4% and the main product is transferred to acrolein (72% selectivity). Washing Au/TiO2-SiO2 and Aa/ZrO2-SiO2 samples with magnesium citrate solution could markedly enhance the activity and PO selectivity because smaller gold particles were obtained.展开更多
A copper-TiO2 based catalyst(Cu-OH-Cl-TiO2) was prepared through a slurry impregnation approach and the catalyst was found to be active and selective for the epoxidation of propylene by dioxygen. With a feed gas of ...A copper-TiO2 based catalyst(Cu-OH-Cl-TiO2) was prepared through a slurry impregnation approach and the catalyst was found to be active and selective for the epoxidation of propylene by dioxygen. With a feed gas of 10% C3H6, 10% O2 and 80% N2 at a gas hourly space velocity(GHSV) of 4000 h-1, a propylene conversion of 4.8% and a propylene oxide(PO) selectivity of 38.9% were achieved over the obtained Cu-OH-Cl-TiO2 catalyst at a reaction temperature of 500 K. It revealed that Cu2+ provided by crystalline Cu2(OH)3Cl plays a key role in catalytic conversion of propylene to PO.展开更多
Titanium silicate-1(TS-1) was treated with a mixed alkaline of tetrapropyl ammonium hydroxide(TPAOH) and NaOH. It was characterized by XRD, nitrogen physical adsorption, SEM, FT-IR, UV-Vis and ICPOES, and studied in p...Titanium silicate-1(TS-1) was treated with a mixed alkaline of tetrapropyl ammonium hydroxide(TPAOH) and NaOH. It was characterized by XRD, nitrogen physical adsorption, SEM, FT-IR, UV-Vis and ICPOES, and studied in propylene epoxidation. The mixed alkaline treatment with TPAOH/NaOH solution did not destroy the MFI structure of TS-1. With increasing NaOH concentrations, the relative crystallinity and the framework titanium decreased to some extent while the mesopore volume, mesopore diameter, and extra-framework titanium increased appreciably. When NaOH concentration was 0.0333 mol L^(-1), the best catalytic performance was obtained.展开更多
Styrene-isoprene-styrene(SIS) block copolymer was modified into epoxidized styrene-isoprene-styrene(ESIS) block copolymer with performic acid generated in situ from hydrogen peroxide and formic acid.The structure ...Styrene-isoprene-styrene(SIS) block copolymer was modified into epoxidized styrene-isoprene-styrene(ESIS) block copolymer with performic acid generated in situ from hydrogen peroxide and formic acid.The structure and property of ESIS were characterized by Fourier transform infrared(FT-IR) spectroscopy,gel permeation chromatography(GPC),thermogravimetric/differential thermogravimetric(TG/DTG),melt flow rate(MFR) and dynamic mechanical analysis(DMA),and the reaction mechanism in the process of epoxidation was analyzed.The results showed that C=C double bonds of 1,4-structure were more active than that of 3,4-structure in polyisoprene chains.With epoxidation reaction proceeding,the whole tendency of molecular weight increased and molecular weight distribution widened,and MFR firstly increased and latterly decreased.The heat resistance of ESIS was superior to that of SIS.When SIS was changed into ESIS with 15.3% of mass fraction of epoxide groups,Tg of polyisoprene chains increased from-45.3 ℃ to 10.9 ℃.In the earlier period of epoxidation,some molecular chains ruptured and new substances with low molecular weight formed.However,in the latter period,crosslinking reaction between molecular chains which was initiated by epoxide groups or C=C double bonds occurred and crosslinked insoluble substances came into being.展开更多
Epoxidation of cyclohexene to cyclohexene oxide was studied in a new type reactor—the ultrasound airlift loop reactor. The influences of ultrasound intensity, molar ratio of isobutyraldehyde to cyclohexene and oxy-ge...Epoxidation of cyclohexene to cyclohexene oxide was studied in a new type reactor—the ultrasound airlift loop reactor. The influences of ultrasound intensity, molar ratio of isobutyraldehyde to cyclohexene and oxy-gen gas flow rate on the conversion of cyclohexene and selectivity of cyclohexene oxide were investigated and dis-cussed, and the optimal operation condition was found, under which 95.2% conversion of cyclohexene and 90.7% selectivity of cyclohexene oxide were achieved. The ultrasonic airlift loop reactor utilizes the synergistic effect of sonochemsitry and higher oxygen transfer rate. Possible reaction mechanisms were outlined and the reason of ul-trasound promotion of epoxidation reactionwas analyzed.展开更多
Selective and durable fixed‐bed catalysts are highly desirable for developing eco‐efficient HPPO(hydrogen peroxide propylene oxide)process.The powder titanosilicate catalysts must be shaped before being applied in i...Selective and durable fixed‐bed catalysts are highly desirable for developing eco‐efficient HPPO(hydrogen peroxide propylene oxide)process.The powder titanosilicate catalysts must be shaped before being applied in industrial processes.As the essential additives for preparing formed catalysts,binders are usually the catalytically inert components,but they would cover the surface and pore mouth of zeolite,thereby declining the accessibility of active sites.By recrystallizing the binder(silica)/Ti‐MWW extrudates with the assistance of dual organic structure‐directing agents,the silica binder was converted into MWW zeolite phase to form a structured binder‐free Ti‐MWW zeolite with Si‐rich shell,which enhanced the diffusion efficiency and maintained the mechanical strength.Meanwhile,due to the partial dissolution of Si in the Ti‐MWW matrix,abundant silanol nests formed and part of framework TiO4 species were transferred into open TiO_(6)ones,improving the accumulation and activation ability of H_(2)O_(2)inside the monolith.Successive piperidine treatment and fluoridation of the binder‐free Ti‐MWW further enhanced the H_(2)O_(2)activation and oxygen transfer ability of the active Ti sites,and stabilized the Ti‐OOH intermediate through hydrogen bond formed between the end H in Ti‐OOH and the adjacent Si‐F species,thus achieving a more efficient epoxidation process.Additionally,the side reaction of PO hydrolysis was inhibited because the modification effectively quenched numerous Si‐OH groups.The lifetime of the modified binder‐free Ti‐MWW catalyst was 2400 h with the H_(2)O_(2)conversion and PO selectivity both above 99.5%.展开更多
Hybrid composites of phosphomolybdic acid@UiO-66(PMo12@UiO-66)and Co-substituted phosphomolybdic acid@UiO-66(PMo11Co@UiO-66)were synthesized using the direct solvothermal method.A variety of characterization results d...Hybrid composites of phosphomolybdic acid@UiO-66(PMo12@UiO-66)and Co-substituted phosphomolybdic acid@UiO-66(PMo11Co@UiO-66)were synthesized using the direct solvothermal method.A variety of characterization results demonstrated that phosphomolybdic acid(PMo12)or Co-substituted phosphomolybdate acid(PMo11Co)clusters are uniformly dispersed in the cages of Zr-based metal-organic UiO-66 frameworks.The catalytic properties of these hybrid composites were investigated by applying the epoxidation of olefins with tert-butyl hydroperoxide as the oxidant.Compared to PMo12@UiO-66,PMo11Co@UiO-66 showed a much higher catalytic activity and was simply recovered by filtration and reused for at least ten runs without significant loss of catalytic activity.Particularly,PMo11Co@UiO-66 can efficiently convert cyclic olefins like limonenes to epoxides,and its selectivity to 1,2-limonene oxide reached 91%in the presence of a radical inhibitor such as hydroquinone.The excellent catalytic activity and stability of the hybrid composite PMo11Co@UiO-66 are mainly attributed to the uniform distribution of highly active PMo11Co units within the smaller cages of UiO-66,to the suitable surface polarity of the hybrid composite for facilitating the access of reagents and solvent,and to the strong interface-interactions between the polyoxometalate and the UiO-66 framework.展开更多
The epoxidation of unsaturated fatty acid methyl esters(FAMEs)by peroxyacetic acid generated in situ from hydrogen peroxide and acetic acid was studied in the presence of SO3H-functional Brnsted acidic ionic liquid (I...The epoxidation of unsaturated fatty acid methyl esters(FAMEs)by peroxyacetic acid generated in situ from hydrogen peroxide and acetic acid was studied in the presence of SO3H-functional Brnsted acidic ionic liquid (IL)[C3SO3HMIM][HSO4]as catalyst.The effects of hydrogen peroxide/ethylenic unsaturation ratio,acetic acid concentration,IL concentration,recycling of the IL catalyst,and temperature on the conversion to oxirane were studied.The kinetics and thermodynamics of unsaturated FAMEs epoxidation and the kinetics of oxirane cleavage of the epoxidized FAMEs by acetic acid were also studied.The conversion of ethylenic unsaturation group to oxirane, the reaction rate of the conversion to oxirane,and the rate of hydrolysis(oxirane cleavage)were higher by using the IL catalyst.展开更多
The utilization of polyoxometalates (POMs) or their derivatives as homogeneous or heterogeneous catalysts in alkene epoxidation is a subject of considerable research activity[1]. The limitation to the use of POMs in...The utilization of polyoxometalates (POMs) or their derivatives as homogeneous or heterogeneous catalysts in alkene epoxidation is a subject of considerable research activity[1]. The limitation to the use of POMs in these catalytic reactions is either their relatively low selectivity in epoxide formation or applicability for a rather limited type of alkenes. Therefore, it would be beneficial if the catalysts bear high selectivity for epoxidation and are applicable for a rather wide variety of alkenes, which is desirable in industrial processes and also vital for the selection of an ideal catalyst[2]. In search for an efficient and practical epoxidation method to utilize aqueous H2O2 as terminal oxidant, we focus on the rare-earth complexes with lacunary POM ligands.展开更多
Silylated Ti-grafted hexagonal mesoporous silica (HMS) catalyst was prepared by the chemical vapor deposition (CVD) using TIC14 as titanium source and hexamethyldisilazane (HMDSZ) as silylating agent. The sample...Silylated Ti-grafted hexagonal mesoporous silica (HMS) catalyst was prepared by the chemical vapor deposition (CVD) using TIC14 as titanium source and hexamethyldisilazane (HMDSZ) as silylating agent. The samples were characterized by XRD, N2- adsorption, PTIR, 29Si NMR, DR UV-vis, and evaluated by epoxidation of styrene, propylene, cyclohexene, and 1-hexene with cumene hydroperoxide (CLIP) as oxidant, respectively. It is revealed that the catalyst possesses typical mesoporous structure, high hydrophobicity and highly dispersed tetracoordinated titanium sites and hence exhibits excellent performance in epoxidation of olefins.展开更多
A series of Mo-containing MFI zeolites with different Mo loadings(Mo-MFI-n,n represent the initial Si/Mo molar ratio)was hydrothermally synthesized by using tetrapropylammonium hydroxide as the template and Mo-EDTA co...A series of Mo-containing MFI zeolites with different Mo loadings(Mo-MFI-n,n represent the initial Si/Mo molar ratio)was hydrothermally synthesized by using tetrapropylammonium hydroxide as the template and Mo-EDTA complex as the Mo source.Various characterization results demonstrated that the use of the Mo-EDTA complex is beneficial for the incorporation of more Mo species into the MFI-type zeolites.The special complexing capability of EDTA^(2–)plays a critical role in adjusting the release rate of the Mo species to combine with the Si tetrahedron species during the zeolite growth process,thus leading to a uniform distribution of Mo in the MFI framework.In addition,a small portion of extra-framework Mo clusters may be distributed inside the channels or near the pore window of the zeolites.The catalytic properties of these Mo-containing MFI zeolites were evaluated for the epoxidation of cyclohexene with H_(2)O_(2)as the oxidant.The composition-optimized catalyst,Mo-MFI-50,efficiently converted cyclohexene to the corresponding epoxide with a relatively high conversion(93%)and epoxide selectivity(82%)at 75℃after 9 h of reaction.Moreover,the resultant Mo-containing MFI catalyst exhibited excellent structural stability and recoverability and was easily recycled by simple filtration without the need for calcination treatment.展开更多
Au-Ag bimetallic nanoparticle‐supported microporous titanium silicalite‐1catalysts were prepared via a hydrothermal‐immersion method,and their structures were examined.These materials serve as efficient catalysts f...Au-Ag bimetallic nanoparticle‐supported microporous titanium silicalite‐1catalysts were prepared via a hydrothermal‐immersion method,and their structures were examined.These materials serve as efficient catalysts for the photosynthesis of propylene oxide via the epoxidation of propene.The Au/Ag mass ratio and reaction temperature were demonstrated to have significant effects on the catalytic activity and selectivity of propylene oxide.The optimal formation rate(68.3μmol/g·h)and selectivity(52.3%)toward propylene oxide were achieved with an Au:Ag mass ratio of4:1.Notably,the strong synergistic effect between Au and Ag resulted in superior photocatalysis of the bimetallic systems compared with those of the individual systems.A probable reaction mechanism was proposed based on the theoretical and experimental results.展开更多
A series of CaO samples were prepared by calcination of commercially available and synthesis of calcium salt precursors such as calcium acetate, carbonate, hydroxide and oxalate etc. CaO samples were found to be effec...A series of CaO samples were prepared by calcination of commercially available and synthesis of calcium salt precursors such as calcium acetate, carbonate, hydroxide and oxalate etc. CaO samples were found to be effective for the epoxidation of styrene using hydrogen peroxide as an oxidant in the presence of acetonitrile. To determine the influence of the physicochemical properties and surface basicity on the catalytic activity, the prepared CaO samples were characterized using thermogravimetry (TG), X-ray diffraction (XRD), scanning electron microscopy (SEM), N2-adsorption and temperature-programmed desorption of CO2 (CO2-TPD). The results indicate that the amounts of very strong basic sites and high basicity strength on CaO sample are key factors for its excellent catalytic performance. In contrast, the surface area, porosity and the surface structure of CaO sample have a relatively minor effect on the catalytic activity. CaO sample, obtained by the decomposition of Ca(OH)2, prepared by precipitating calcium nitrate with sodium hydroxide in ethylene glycol solution, exhibits the highest amount of very strong basic sites and stronger strength of basic sites, and therefore it catalyses the epoxidation of styrene with the highest rate among the tested CaO samples. Under the selected reaction conditions, the selectivity of 97.5% to styrene oxide at a conversion in excess of 99% could be obtained.展开更多
Chiral phase-transfer catalysts, derived from cinchona alkaloids and Fréchet dendritic wedges up to generation two, have been synthesized. These chiral dendritic molecules have been used as PTCs in the epoxidatio...Chiral phase-transfer catalysts, derived from cinchona alkaloids and Fréchet dendritic wedges up to generation two, have been synthesized. These chiral dendritic molecules have been used as PTCs in the epoxidation of α, β-enones, showing a moderate level of asymmetric induction.展开更多
The epoxidation of methyl oleate(MO)was conducted in the presence of aqueous H2O2 as the oxidant and hierarchical TS-1(HTS-1)as the catalyst;the catalyst was synthesized using polyquaternium-6 as the mesopore template...The epoxidation of methyl oleate(MO)was conducted in the presence of aqueous H2O2 as the oxidant and hierarchical TS-1(HTS-1)as the catalyst;the catalyst was synthesized using polyquaternium-6 as the mesopore template.The effects of various parameters,i.e.,H2O2/C=C molar ratio,oxidant concentration,amount of the catalyst,reaction temperature,and time,were systematically studied.Furthermore,response surface methodology(RSM)was used to optimize the conditions to maximize the yield of epoxy MO and to evaluate the significance and interplay of the factors affecting the epoxy MO production.The H2O2/C=C molar ratio and catalyst amount were the determining factors for MO epoxidation,wherein the maximum yield of epoxy MO reached 94.9%over HTS-1 under the optimal conditions.展开更多
文摘Au sites supported on Ti-containing materials(Au/Ti-containing catalyst)are currently considered as a promising catalyst for the propylene epoxidation owing to the synergistic effect that hydrogen peroxide species formed on Au sites diffuses to the Ti sites to form the Ti-hydroperoxo intermedi-ates and contributes to the formation of propylene oxide(PO).In principle,thermal treatment will significantly affect the chemical and physical structures of Ti-containing materials.Consequently,the synergy between tailored Ti sites with different surface properties and Au sites is highly expected to enhance the catalytic performance for the reaction.Herein,we systematically studied the intrinsic effects of different microenvironments around Ti sites on the PO adsorption/desorption and conversion,and then effectively improved the catalytic performance by tailoring the number of surface hydroxyl groups.The Ti^(Ⅵ) material with fewer hydroxyls stimulates a remarkable enhancement in PO selectivity and H_(2) efficiency compared to the Ti^(Ⅵ) material that possessed more hydroxyls,offering a 7-fold and 4-fold increase,respectively.As expected,the Ti^(Ⅵ+Ⅳ) and Ti^(Ⅳ) materials also exhibit a similar phenomenon to the Ti^(Ⅵ) materials through the same thermal treatment,which strongly supports that the Ti sites microenvironment is an important factor in suppressing PO con-version and enhancing catalytic performance.These insights could provide guidance for the rational preparation and optimization of Ti-containing materials synergizing with Au catalysts for propylene epoxidation.
基金supported by Guangdong Science and Technology Planning Project(2015A020216002)Guangdong Natural Science Foundation(2014A030313259)the National Natural Science Foundation of China(21543014,21173086,U1301245)~~
文摘The heterogeneously copper-catalyzed oxidative cleavage of styrene was studied using copper-doped mesoporous KIT-6(CU-KIT-6_x) prepared via pH adjustment(where x is the pH:1.43,2.27,3.78,3.97,4.24 or 6.62).Variations in the catalyst structure and morphology with pH values were characterized by X-ray power diffraction,nitrogen adsorption-desorption analysis,transmission electron microscopy and X-ray photoelectron spectroscopy.As the pH value applied during the initial synthesis,the resulting Cu-KIT-6_x exhibited different structural,textural and surface characteristics,especially in terms of specific copper species and copper content At a pH value of 3.78,approximately 4.6 wt%copper(Ⅱ) was successfully incorporated into the framework of the initial KIT-6,in the form of-Cu-O-Si- groups.The catalytic performance of each catalyst was evaluated by following the epoxidation of styrene,employing tert-butyl hydroperoxide as the oxidant and CH_3CN as the solvent.A significant styrene conversion of 43.5%with 86.6%selectivity for the desired styrene epoxide was obtained over the Cu-KIT-63.78.A higher Cu content,an ordered cubic laid mesoporous architecture and various specific textural characteristics all combined to endow the Cu-KIT-63.78 with high catalytic activity and good stability.
基金supported by the National Natural Science Foundation of China(21173100 and 21320102001)~~
文摘The catalytic epoxidation of olefin was investigated on two copper complex-modified molybdenum oxides with a 3D supramolecular structure, [Cu(bipy)]4[Mo15O47].2H2O (1) and [Cu1(bix)][(Cu1bix) (δ-MoVl8O26)0.5] (2) (bipy = 4,4'-bipyridine, bix = 1,4-bis(imidazole-1-ylmethyl)benzene). Both compounds were catalytically active and stable for the epoxidation of cyclooctene, 1-octene, and styrene with tert-butyl hydroperoxide (t-BuOOH) as oxidant. The excellent catalytic performance was attributed to the presence of stable coordination bonds between the molybdenum oxide and copper complex, which resulted in the formation of easily accessible Mo species with high electropositivity. In addition, the copper complex also acted as an active site for the activation of t-BuOOH, thus im- proving these copper complex-modified polyoxometalates.
文摘The dioxygen affinities and catalytic epoxidation performance of transition-metal hydroxamates were investigated for the first time. The effects of substituents on these properties were also discussed in the paper.
基金Supported by the National Natural Science Foundation of China(No.21276183)
文摘Titanium silicalite-1(TS-1) was synthesized by a hydrothermal synthesis method with different amounts of tetrapropyl ammonium hydroxide(TPAOH) as template.The as-prepared TS-1 was characterized by scanning electron microscopy,X-ray powder diffraction,Fourier-transform infrared resonance spectroscopy,ultravioletvisible diffuse reflectance spectroscopy and nitrogen physical adsorption and desorption,and studied in the propylene epoxidation with hydrogen peroxide in a fixed bed reactor.The results showed that the amount of TPAOH had a strong influence on the grain morphology,the amount of framework Ti,and the average particle sizes of TS-1.With the increase of TPAOH amount in the synthesis(the molar ratio of TPAOH/SiO_2 increasing from 0.25 to 0.45),the morphology changed gradually from ellipsoids to cubes,the particle sizes of TS-1 decreased slightly,the amount of the framework Ti increased appreciably,and the catalytic stability in the propylene epoxidation increased markedly.Moreover,all the catalysts had the same selectivity to propylene epoxide.However,when the molar ratio of TPAOH/SiO_2 was further increased to 0.55,the particles became large hexagons with the size distribution in a wide range,and the catalytic stability decreased sharply although the amount of the framework Ti increased further,which can be attributed to the long diffusion paths of the reactants in the zeolite.
基金The Natural Science Foundation of China (No.20273057,20473070).
文摘Gold catalysts supported on SiO2, TiO2, TiO2-SiO2, and ZrO2-SiO2 supports were prepared by impregnating each support with a basic solution of tetrachloroauric acid. X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques were used to characterize their structure and surface composition. The results indicated that the size of gold particles could be controlled to below 10 nm by this method of preparation. Washing gold catalysts with water could markedly enhance the dispersion of metallic gold particles on the surface, but it could not completely remove the chloride ions left on the surface. The catalytic performance of direct vapor-phase epoxidation of propylene using air as an oxidant over these catalysts was evaluated at atmospheric pressure. The selectivity to propylene oxide (PO) was found to vary with reaction time on the stream. At the reaction conditions of atmosphere pressure, temperature 325 ℃, feed gas ratio V(C3H6)/V(O2)= 1/2, and GHSV =6000h^-1, 17.9% PO selectivity with 0.9% propylene conversion were obtained at initial 10 min for Au/SiO2 catalyst. After reacting 60 min only 8.9% PO selectivity were detected, but the propylene conversion rises to 1.4% and the main product is transferred to acrolein (72% selectivity). Washing Au/TiO2-SiO2 and Aa/ZrO2-SiO2 samples with magnesium citrate solution could markedly enhance the activity and PO selectivity because smaller gold particles were obtained.
基金Supported by the National Basic Research Program of China(No.2007CB613303)the National Natural Science Foundation of China(No.20731003)
文摘A copper-TiO2 based catalyst(Cu-OH-Cl-TiO2) was prepared through a slurry impregnation approach and the catalyst was found to be active and selective for the epoxidation of propylene by dioxygen. With a feed gas of 10% C3H6, 10% O2 and 80% N2 at a gas hourly space velocity(GHSV) of 4000 h-1, a propylene conversion of 4.8% and a propylene oxide(PO) selectivity of 38.9% were achieved over the obtained Cu-OH-Cl-TiO2 catalyst at a reaction temperature of 500 K. It revealed that Cu2+ provided by crystalline Cu2(OH)3Cl plays a key role in catalytic conversion of propylene to PO.
基金supported by the National Natural Science Foundation of China (No.21276183)
文摘Titanium silicate-1(TS-1) was treated with a mixed alkaline of tetrapropyl ammonium hydroxide(TPAOH) and NaOH. It was characterized by XRD, nitrogen physical adsorption, SEM, FT-IR, UV-Vis and ICPOES, and studied in propylene epoxidation. The mixed alkaline treatment with TPAOH/NaOH solution did not destroy the MFI structure of TS-1. With increasing NaOH concentrations, the relative crystallinity and the framework titanium decreased to some extent while the mesopore volume, mesopore diameter, and extra-framework titanium increased appreciably. When NaOH concentration was 0.0333 mol L^(-1), the best catalytic performance was obtained.
文摘Styrene-isoprene-styrene(SIS) block copolymer was modified into epoxidized styrene-isoprene-styrene(ESIS) block copolymer with performic acid generated in situ from hydrogen peroxide and formic acid.The structure and property of ESIS were characterized by Fourier transform infrared(FT-IR) spectroscopy,gel permeation chromatography(GPC),thermogravimetric/differential thermogravimetric(TG/DTG),melt flow rate(MFR) and dynamic mechanical analysis(DMA),and the reaction mechanism in the process of epoxidation was analyzed.The results showed that C=C double bonds of 1,4-structure were more active than that of 3,4-structure in polyisoprene chains.With epoxidation reaction proceeding,the whole tendency of molecular weight increased and molecular weight distribution widened,and MFR firstly increased and latterly decreased.The heat resistance of ESIS was superior to that of SIS.When SIS was changed into ESIS with 15.3% of mass fraction of epoxide groups,Tg of polyisoprene chains increased from-45.3 ℃ to 10.9 ℃.In the earlier period of epoxidation,some molecular chains ruptured and new substances with low molecular weight formed.However,in the latter period,crosslinking reaction between molecular chains which was initiated by epoxide groups or C=C double bonds occurred and crosslinked insoluble substances came into being.
基金Supported by Qinglan Project Foundation of Jiangsu Province and Doctoral Dissertation Innovate Foundation of Nanjing Uni-versity of Technology (No.BSCS200508).
文摘Epoxidation of cyclohexene to cyclohexene oxide was studied in a new type reactor—the ultrasound airlift loop reactor. The influences of ultrasound intensity, molar ratio of isobutyraldehyde to cyclohexene and oxy-gen gas flow rate on the conversion of cyclohexene and selectivity of cyclohexene oxide were investigated and dis-cussed, and the optimal operation condition was found, under which 95.2% conversion of cyclohexene and 90.7% selectivity of cyclohexene oxide were achieved. The ultrasonic airlift loop reactor utilizes the synergistic effect of sonochemsitry and higher oxygen transfer rate. Possible reaction mechanisms were outlined and the reason of ul-trasound promotion of epoxidation reactionwas analyzed.
文摘Selective and durable fixed‐bed catalysts are highly desirable for developing eco‐efficient HPPO(hydrogen peroxide propylene oxide)process.The powder titanosilicate catalysts must be shaped before being applied in industrial processes.As the essential additives for preparing formed catalysts,binders are usually the catalytically inert components,but they would cover the surface and pore mouth of zeolite,thereby declining the accessibility of active sites.By recrystallizing the binder(silica)/Ti‐MWW extrudates with the assistance of dual organic structure‐directing agents,the silica binder was converted into MWW zeolite phase to form a structured binder‐free Ti‐MWW zeolite with Si‐rich shell,which enhanced the diffusion efficiency and maintained the mechanical strength.Meanwhile,due to the partial dissolution of Si in the Ti‐MWW matrix,abundant silanol nests formed and part of framework TiO4 species were transferred into open TiO_(6)ones,improving the accumulation and activation ability of H_(2)O_(2)inside the monolith.Successive piperidine treatment and fluoridation of the binder‐free Ti‐MWW further enhanced the H_(2)O_(2)activation and oxygen transfer ability of the active Ti sites,and stabilized the Ti‐OOH intermediate through hydrogen bond formed between the end H in Ti‐OOH and the adjacent Si‐F species,thus achieving a more efficient epoxidation process.Additionally,the side reaction of PO hydrolysis was inhibited because the modification effectively quenched numerous Si‐OH groups.The lifetime of the modified binder‐free Ti‐MWW catalyst was 2400 h with the H_(2)O_(2)conversion and PO selectivity both above 99.5%.
文摘Hybrid composites of phosphomolybdic acid@UiO-66(PMo12@UiO-66)and Co-substituted phosphomolybdic acid@UiO-66(PMo11Co@UiO-66)were synthesized using the direct solvothermal method.A variety of characterization results demonstrated that phosphomolybdic acid(PMo12)or Co-substituted phosphomolybdate acid(PMo11Co)clusters are uniformly dispersed in the cages of Zr-based metal-organic UiO-66 frameworks.The catalytic properties of these hybrid composites were investigated by applying the epoxidation of olefins with tert-butyl hydroperoxide as the oxidant.Compared to PMo12@UiO-66,PMo11Co@UiO-66 showed a much higher catalytic activity and was simply recovered by filtration and reused for at least ten runs without significant loss of catalytic activity.Particularly,PMo11Co@UiO-66 can efficiently convert cyclic olefins like limonenes to epoxides,and its selectivity to 1,2-limonene oxide reached 91%in the presence of a radical inhibitor such as hydroquinone.The excellent catalytic activity and stability of the hybrid composite PMo11Co@UiO-66 are mainly attributed to the uniform distribution of highly active PMo11Co units within the smaller cages of UiO-66,to the suitable surface polarity of the hybrid composite for facilitating the access of reagents and solvent,and to the strong interface-interactions between the polyoxometalate and the UiO-66 framework.
文摘The epoxidation of unsaturated fatty acid methyl esters(FAMEs)by peroxyacetic acid generated in situ from hydrogen peroxide and acetic acid was studied in the presence of SO3H-functional Brnsted acidic ionic liquid (IL)[C3SO3HMIM][HSO4]as catalyst.The effects of hydrogen peroxide/ethylenic unsaturation ratio,acetic acid concentration,IL concentration,recycling of the IL catalyst,and temperature on the conversion to oxirane were studied.The kinetics and thermodynamics of unsaturated FAMEs epoxidation and the kinetics of oxirane cleavage of the epoxidized FAMEs by acetic acid were also studied.The conversion of ethylenic unsaturation group to oxirane, the reaction rate of the conversion to oxirane,and the rate of hydrolysis(oxirane cleavage)were higher by using the IL catalyst.
基金Supported by the National Natural Science Foundation of China (No. 31060121)
文摘The utilization of polyoxometalates (POMs) or their derivatives as homogeneous or heterogeneous catalysts in alkene epoxidation is a subject of considerable research activity[1]. The limitation to the use of POMs in these catalytic reactions is either their relatively low selectivity in epoxide formation or applicability for a rather limited type of alkenes. Therefore, it would be beneficial if the catalysts bear high selectivity for epoxidation and are applicable for a rather wide variety of alkenes, which is desirable in industrial processes and also vital for the selection of an ideal catalyst[2]. In search for an efficient and practical epoxidation method to utilize aqueous H2O2 as terminal oxidant, we focus on the rare-earth complexes with lacunary POM ligands.
文摘Silylated Ti-grafted hexagonal mesoporous silica (HMS) catalyst was prepared by the chemical vapor deposition (CVD) using TIC14 as titanium source and hexamethyldisilazane (HMDSZ) as silylating agent. The samples were characterized by XRD, N2- adsorption, PTIR, 29Si NMR, DR UV-vis, and evaluated by epoxidation of styrene, propylene, cyclohexene, and 1-hexene with cumene hydroperoxide (CLIP) as oxidant, respectively. It is revealed that the catalyst possesses typical mesoporous structure, high hydrophobicity and highly dispersed tetracoordinated titanium sites and hence exhibits excellent performance in epoxidation of olefins.
文摘A series of Mo-containing MFI zeolites with different Mo loadings(Mo-MFI-n,n represent the initial Si/Mo molar ratio)was hydrothermally synthesized by using tetrapropylammonium hydroxide as the template and Mo-EDTA complex as the Mo source.Various characterization results demonstrated that the use of the Mo-EDTA complex is beneficial for the incorporation of more Mo species into the MFI-type zeolites.The special complexing capability of EDTA^(2–)plays a critical role in adjusting the release rate of the Mo species to combine with the Si tetrahedron species during the zeolite growth process,thus leading to a uniform distribution of Mo in the MFI framework.In addition,a small portion of extra-framework Mo clusters may be distributed inside the channels or near the pore window of the zeolites.The catalytic properties of these Mo-containing MFI zeolites were evaluated for the epoxidation of cyclohexene with H_(2)O_(2)as the oxidant.The composition-optimized catalyst,Mo-MFI-50,efficiently converted cyclohexene to the corresponding epoxide with a relatively high conversion(93%)and epoxide selectivity(82%)at 75℃after 9 h of reaction.Moreover,the resultant Mo-containing MFI catalyst exhibited excellent structural stability and recoverability and was easily recycled by simple filtration without the need for calcination treatment.
基金supported by the National Natural Science Foundation of China(21576050)the Natural Science Foundation of Jiangsu Province(BK20150604)~~
文摘Au-Ag bimetallic nanoparticle‐supported microporous titanium silicalite‐1catalysts were prepared via a hydrothermal‐immersion method,and their structures were examined.These materials serve as efficient catalysts for the photosynthesis of propylene oxide via the epoxidation of propene.The Au/Ag mass ratio and reaction temperature were demonstrated to have significant effects on the catalytic activity and selectivity of propylene oxide.The optimal formation rate(68.3μmol/g·h)and selectivity(52.3%)toward propylene oxide were achieved with an Au:Ag mass ratio of4:1.Notably,the strong synergistic effect between Au and Ag resulted in superior photocatalysis of the bimetallic systems compared with those of the individual systems.A probable reaction mechanism was proposed based on the theoretical and experimental results.
基金supported by the National Natural Science Foundation of China (No.21173110)
文摘A series of CaO samples were prepared by calcination of commercially available and synthesis of calcium salt precursors such as calcium acetate, carbonate, hydroxide and oxalate etc. CaO samples were found to be effective for the epoxidation of styrene using hydrogen peroxide as an oxidant in the presence of acetonitrile. To determine the influence of the physicochemical properties and surface basicity on the catalytic activity, the prepared CaO samples were characterized using thermogravimetry (TG), X-ray diffraction (XRD), scanning electron microscopy (SEM), N2-adsorption and temperature-programmed desorption of CO2 (CO2-TPD). The results indicate that the amounts of very strong basic sites and high basicity strength on CaO sample are key factors for its excellent catalytic performance. In contrast, the surface area, porosity and the surface structure of CaO sample have a relatively minor effect on the catalytic activity. CaO sample, obtained by the decomposition of Ca(OH)2, prepared by precipitating calcium nitrate with sodium hydroxide in ethylene glycol solution, exhibits the highest amount of very strong basic sites and stronger strength of basic sites, and therefore it catalyses the epoxidation of styrene with the highest rate among the tested CaO samples. Under the selected reaction conditions, the selectivity of 97.5% to styrene oxide at a conversion in excess of 99% could be obtained.
文摘Chiral phase-transfer catalysts, derived from cinchona alkaloids and Fréchet dendritic wedges up to generation two, have been synthesized. These chiral dendritic molecules have been used as PTCs in the epoxidation of α, β-enones, showing a moderate level of asymmetric induction.
基金supported by the Evonik Industries AGthe Program for New Century Excellent Talents in University(NCET-04-0270)~~
文摘The epoxidation of methyl oleate(MO)was conducted in the presence of aqueous H2O2 as the oxidant and hierarchical TS-1(HTS-1)as the catalyst;the catalyst was synthesized using polyquaternium-6 as the mesopore template.The effects of various parameters,i.e.,H2O2/C=C molar ratio,oxidant concentration,amount of the catalyst,reaction temperature,and time,were systematically studied.Furthermore,response surface methodology(RSM)was used to optimize the conditions to maximize the yield of epoxy MO and to evaluate the significance and interplay of the factors affecting the epoxy MO production.The H2O2/C=C molar ratio and catalyst amount were the determining factors for MO epoxidation,wherein the maximum yield of epoxy MO reached 94.9%over HTS-1 under the optimal conditions.