The miscibility of the blend,composed of a bisphenol A epoxy resins (Diglycidyl ether of bisphenol A) (DGEBA) and poly(ethylene oxide) (PEG) and crosslinked by phthalic anhydride (PA) was studied using dynamic mechani...The miscibility of the blend,composed of a bisphenol A epoxy resins (Diglycidyl ether of bisphenol A) (DGEBA) and poly(ethylene oxide) (PEG) and crosslinked by phthalic anhydride (PA) was studied using dynamic mechanical method. Single glass transition temperatures intermediate between the two pure components were observed for all blend levels. The secondary relaxation mechanism should relate to not only diester linkage, but also hydroxyether structural unit in the system. Fourier transform infrared spectroscopy (FTIR) is applied to study the curing reaction and intermolecular specific interaction of the system. The results indicate the PEO participates the crosslinking reaction, accelerates the curing reaction and make the reaction more perfect. The shifts of the hydroxyl band and carbonyl band demonstrate the presence of the intermolecular interaction in the cured blend. Moreover, the molecular interaction between the side hydroxyl in the hydroxyether units and the ether bond in PEO macromolecules is stronger.展开更多
Sustained casing pressure(SCP)is a crucial issue in the oil and gas production lifecycle.Epoxy resins,exhibiting exceptional compressive strength,ductility,and shear bonding strength,have the potential to form reliabl...Sustained casing pressure(SCP)is a crucial issue in the oil and gas production lifecycle.Epoxy resins,exhibiting exceptional compressive strength,ductility,and shear bonding strength,have the potential to form reliable barriers.The injectivity and sealing capacity of the epoxy resin is crucial parameters for the success of shallow remediation operations.This study aimed to develop and assess a novel solid-free resin sealant as an alternative to Portland cement for mitigating fluid leakage.The investigation evaluated the viscosity,compressive strength,and brittleness index of the epoxy resin sealant,as well as its tangential and normal shear strengths in conjunction with casing steel.The flow characteristics and sealing abilities of conventional cement and epoxy resin were comparatively analyzed in cracks.The results showed that the application of a viscosity reducer facilitated control over the curing time of the epoxy resin,ranging from 1.5 to 6 h,and reduced the initial viscosity from 865.53 to 118.71 m Pa,s.The mechanical properties of the epoxy resin initially increased with a rise in curing agent content before experiencing a minor decrease.The epoxy resin containing 30%curing agent exhibited optimal mechanical properties.After a 14-day curing period,the epoxy resin's compressive strength reached81.37 MPa,2.12 times higher than that of cement,whereas the elastic modulus of cement was 2.99 times greater than that of the epoxy resin.The brittleness index of epoxy resin is only 3.42,demonstrating high flexibility and toughness.The tangential and normal shear strengths of the epoxy resin exceeded those of cement by 3.17 and 2.82 times,respectively.In a 0.5 mm-wide crack,the injection pressure of the epoxy resin remained below 0.075 MPa,indicating superior injection and flow capabilities.Conversely,the injection pressure of cement surged dramatically to 2.61 MPa within 5 min.The breakthrough pressure of0.5 PV epoxy resin reached 7.53 MPa,decreasing the crack's permeability to 0.02 D,a mere 9.49%of the permeability observed following cement plugging.Upon sealing a 2 mm-wide crack using epoxy resin,the maximum breakthrough pressure attained 5.47 MPa,3.48 times of cement.These results suggest that epoxy resin sealant can be employed safely and effectively to seal cracks in the cement.展开更多
A series of novel liquid crystalline epoxides with lateral substituents were cured with anhydrides and the cure kinetics was investigated by non-isothermal DSC technique. The results showed that the lengths of lateral...A series of novel liquid crystalline epoxides with lateral substituents were cured with anhydrides and the cure kinetics was investigated by non-isothermal DSC technique. The results showed that the lengths of lateral substituents have great effect on the value of Ea. The curing reaction became less active, when the liquid crystalline epoxides have long lateral substituents and were controlled by diffusion at the late stage of cure. A nematic structure was observed by POM and XRD.展开更多
This paper discusses the fundamental principle of microwave heating, and based on the advantages of microwave heating, use maleic anhydride as curing agent. The technology of microwave curing E44 epoxy resins is inves...This paper discusses the fundamental principle of microwave heating, and based on the advantages of microwave heating, use maleic anhydride as curing agent. The technology of microwave curing E44 epoxy resins is investigated, the mechanical properties of cured epoxy resin samples in different contents of curing agent by microwave and thermal curing methods are measured respectively, and then some experimental results for which are obtained. At last, this paper analyses why microwave curing can improve mechanical property of epoxy resin.展开更多
Diglycidyl 4,5-epoxy tetrahydro phthalate/methyl tetrahydrophthalic anhydride (TDE-85/MeTHPA) epoxy resin modified by polyurethane (PU) was prepared with 1,4-butanediol (1,4-BDO), trimethylol propane (TMP) and...Diglycidyl 4,5-epoxy tetrahydro phthalate/methyl tetrahydrophthalic anhydride (TDE-85/MeTHPA) epoxy resin modified by polyurethane (PU) was prepared with 1,4-butanediol (1,4-BDO), trimethylol propane (TMP) and polyurethane prepolymer synthesized by polypropylene glycol and toluene diisocynate. Chemical reaction and curing mechanism of this system were discussed by incorporating the results of infra spectrum analysis. The results indicate that the epoxy polymeric network I is obtained by the curing reaction between TDE-85 and MeTHPA, while the PU polymeric network II is obtained by the chain-extended and crosslinking reaction between 1,4-BDO, TMP and polyurethane prepolymer(PUP). The graft chemical bonds are formed between polymer networks I and II that therefore increase the degree of blend and compatibility between epoxy polymer and PU.展开更多
Cure behaviors and water up-take evaluation of a low cost, ecofriendly and water soluble epoxy resin prepared by reaction between epichlorohydrin and PEG400, PEG600 and PEG1000, respectively, were investigated using n...Cure behaviors and water up-take evaluation of a low cost, ecofriendly and water soluble epoxy resin prepared by reaction between epichlorohydrin and PEG400, PEG600 and PEG1000, respectively, were investigated using non-isothermal differential scanning calorimetry (DSC) and gravimetrical method, respectively. Factors affecting the cure behaviors as well as water up-take of waterborne epoxy resins, such as amount of triethylenetetramine (TETA) and triethylene diamine (TEDA), PEG molecular weight, curing temperature, were systematically investigated. The prepared water soluble epoxy resins can be cured under room temperature with the shape of the curing curves similar to that expected for an autocatalytic reaction.展开更多
Microwave processing has great potential for improving composite manufacturing such as reduction of curing time, energy requirements and operational costs. In this paper, the effects of microwave irradiation for resin...Microwave processing has great potential for improving composite manufacturing such as reduction of curing time, energy requirements and operational costs. In this paper, the effects of microwave irradiation for resin-curing of carbon fiber/epoxy resin composite that was composed of discontinuous carbon fibers of 130 μm or 3 mm were investigated. The mechanical properties of carbon fiber/epoxy resin composite cured by microwave irradiation for 20 min at 120°C were similar to ones of the sample prepared by conventional oven for 180 min at 120°C. Microwavecured carbon fiber/epoxy resin composite had higher glass transition temperature than the one prepared by conventional oven. The relation between curing time and flexural modulus indicated that the curing velocity of microwave-irradiated carbon fiber/epoxy resin composite was 9 times faster than the one prepared by conventional oven. Furthermore, activation energies for resincuring reaction on microwave and conventional-cured carbon fiber/epoxy resin composite were estimated. The resin-curing reaction in carbon fiber/epoxy resin composite was promoted by microwave irradiation.展开更多
The possibility of curing of epoxy resin induced by femtosecond laser beam was explored through choosing different initators.Absorption spectroscopy, infrared spectroscopy(IR),stereomicroscopy and scanning electron ...The possibility of curing of epoxy resin induced by femtosecond laser beam was explored through choosing different initators.Absorption spectroscopy, infrared spectroscopy(IR),stereomicroscopy and scanning electron microscopy(SEM0 were applied to analyze the structure of epoxy resin systems after irradiation with a femtosecond laser beam.The experimental results show that the epoxy resin systems containing diaryliodonium salts can be cared by irradiation of femtosecond laser pulse,while the systems containing benzoing can not be cured.It is found that diaryliodonium salts decompose under the irradiation of femtosecond lase pulse through multi(two)-photon absorption,initiating the ring-opening polymerization of epoxy resin.And the appearance of cured area has a sheet structure consisting of many tiny lamellar structures.展开更多
The curing of a microgel-epoxy resin two phase polymer prepared by in situ copolymerization of unsaturated polyester with acrylic monomer was studied. The unsaturated unit reacted with N—H during the cure of the resi...The curing of a microgel-epoxy resin two phase polymer prepared by in situ copolymerization of unsaturated polyester with acrylic monomer was studied. The unsaturated unit reacted with N—H during the cure of the resin with ethylene diamine. The Michael type reaction was ten times more rapid than the addition of N—H to epoxide.This was accounted for the lower apparent activation energy of the curing of the two phase resin.展开更多
Five secondary amine terminated poly(ester-amine)s (defined as PEA) with controlled molecular structures were synthesized through reacting excessive piperazine with phthalicdiglycol diacrylate (PDDA) and 1,1,1-t...Five secondary amine terminated poly(ester-amine)s (defined as PEA) with controlled molecular structures were synthesized through reacting excessive piperazine with phthalicdiglycol diacrylate (PDDA) and 1,1,1-trimethylolpropane triacrylate (TMPTA) at a constant secondary amine/acrylate group ratio of 1.5/1 and at different PDDA/TMPTA molar ratios. Both IR and ^1H-NMR spectra indicated that all acrylate groups were consumed in the reaction, based on which the structural parameters were calculated from the ^1H-NMR spectra. With decreasing PDDA/TMPTA ratio, the content of secondary amine, degree of branching, molecular weight, Tg and Td increased accordingly. These polymers were further used as both crosslinkers and flexibilizers for a linear epoxy resin E51 to form cured films under ambient condition. The gel content, relative hardness and Tg of the resulting films increased as PEA molecules changed from linear to highly branching structures. Due to the flexibility of PEA molecules, all the films possessed excellent mechanical performance.展开更多
Sub-micron sized phenolic epoxy resin waterborne particles were prepared by phase inversion emulsification. Micro-phase separation occurred during the curing process at high temperature. The as-prepared samples posses...Sub-micron sized phenolic epoxy resin waterborne particles were prepared by phase inversion emulsification. Micro-phase separation occurred during the curing process at high temperature. The as-prepared samples possessed one glass transition temperature (Tg) and two exothermal processes during DSC heating scannings. After being thermally treated above the exothermal peak temperature, they possessed two glass transition temperatures with the disappearance of exothermal peaks, whilst a core/shell structure was formed. This was likely related with the outward diffusion of reactive oligomers to the outer layer of particles.展开更多
Based on three typical mechanisms (second-order, third-order and competitive mechanisms) for the curing reactions of the epoxy resins with amines, a pair of the kinetic equations (for primary and secondary aminations)...Based on three typical mechanisms (second-order, third-order and competitive mechanisms) for the curing reactions of the epoxy resins with amines, a pair of the kinetic equations (for primary and secondary aminations) was presented to explain the uniformity and relationship among the three different kinetic mechanisms of the reactions. The presented macro-equations were deduced from the kinetic micro-equations by the statistics method. And the constitutive equations were verified by experimental data at different reaction times and temperatures (95°C, 60°C and 39°C), taking diglycidyl ether of bisphenol A (DGEBA) /ethyleneamine (EA) as a model.展开更多
A new method concerning with the simultaneous reinforcing and toughening of polypropylene (PP) was reported. Dynamical cure of the epoxy resin was successfully applied in the PP/maleic anhydride-grafted styrene-ethy...A new method concerning with the simultaneous reinforcing and toughening of polypropylene (PP) was reported. Dynamical cure of the epoxy resin was successfully applied in the PP/maleic anhydride-grafted styrene-ethylene-butylene-styrene (SEBS) triblock copolymer, and the obtained blends named as dynamically cured PP/MAH-g-SEBS/epoxy blends. The stiffness and toughness of the blends are in a good balance, and MAH-g-SEBS was acted as not only an impact modifier but also a compatibilizer. The structure of the dynamically cured PP/MAH-g-SEBS/epoxy blends is the embedding of the epoxy particles by the MAH-g- SEBS.C2009 Xue Liang Jiang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
This paper presents a preliminary study on the dielectric properties and curing of three different types of epoxy resins mixed at various stoichiometric mixture of hardener, flydust and aluminium powder under microwav...This paper presents a preliminary study on the dielectric properties and curing of three different types of epoxy resins mixed at various stoichiometric mixture of hardener, flydust and aluminium powder under microwave energy. In this work, the curing process of thin layers of epoxy resins using microwave radiation was investigated as an alternative technique that can' be implemented to develop a new rapid product development technique. In this study it was observed that the curing time and temperature were a function of the percentage of hardener and fillers presence in the epoxy resins. Initially dielectric properties of epoxy resins with hardener were measured which was directly correlated to the curing process in order to understand the properties of cured specimen. Tensile tests were conducted on the three different types of epoxy resins with hardener and fillers. Modifying dielectric properties of the mixtures a significant decrease in curing time was observed. In order to study the microstructural changes of cured specimen the morphology of the fracture surface was carried out by using scanning electron microscopy.展开更多
The cure kinetics of diglycidyl ether of bisphenol A (DGEBA) with hyperbranched poly (3-hydroxyphenyl) phosphate(HHPP) as the curing agent was investigated by means of non-isothermal differential scanning calori...The cure kinetics of diglycidyl ether of bisphenol A (DGEBA) with hyperbranched poly (3-hydroxyphenyl) phosphate(HHPP) as the curing agent was investigated by means of non-isothermal differential scanning calorimetry (DSC) at various heating rates. The results were compared with the corresponding results by using 1,3-dihydroxybenzene(DHB) as a model compound. The results show that HHPP can enhance the cure reaction of DGEBA, resulting in the decrease of the peak temperature of the curing curve as well as the decrease of the activation energy because of the flexible --P--O-- groups in the backbone of HHPP. However, both the activation energy of the cured polymer and the peak temperature of the curing curve are increased with DHB as a curing agent. The cure kinetics of the DGEBA/HHPP system was calculated by using the isoconversional method given by Malek. It was found that the two-parameter autocatalytic model(Sestak-Berggren equation) is the most adequate one to describe the cure kinetics of the studied System at various heating rates. The obtained non-isothermal DSC curves from the experimental data show the results being accordant with those theoretically calculated.展开更多
It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin;however,this has remained a huge challenge.Herein,an eco-friendly,low-cost,and facile-fabricated bio-based hyperbranc...It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin;however,this has remained a huge challenge.Herein,an eco-friendly,low-cost,and facile-fabricated bio-based hyperbranched toughener,carboxylic acid-functionalized tannic acid(CATA),was successfully prepared and applicated to the preparation of solvent-free epoxy resins.The mechanical performance,morphology,structural characterization,and thermal characterization of toughened epoxy resin system were studied.The toughened epoxy resin system with only 1.0wt%CATA reached the highest impact strength,111%higher than the neat epoxy resin system.Notably,the tensile strength and elongation at break of toughened epoxy resin systems increased moderately with increasing CATA loading.Nonphase-separated hybrids with significant toughening effect were obtained.Additionally,the thermal stabilities of toughened epoxy resin systems decreased with increasing CATA loading.This study provides an eco-friendly,cost-effective,and facile approach for the preparation of high-performance,solvent-free epoxy resins with potential for practical applications in sealing integrated circuits and electrical devices fields.展开更多
By using NaOH and Na2SiO3 as the activator,the mechanical properties and shrinkage of the geopolymer after incorporation of 0%,10%,20%,and 30% epoxy resin were investigated.The mechanism of epoxy resin toughening meta...By using NaOH and Na2SiO3 as the activator,the mechanical properties and shrinkage of the geopolymer after incorporation of 0%,10%,20%,and 30% epoxy resin were investigated.The mechanism of epoxy resin toughening metakaolin based geopolymer was analyzed by X-ray diffraction,scanning electron microscopy and Fourier transform infrared spectroscopy.It was shown that with the increases of epoxy resin,the shrinkage performance was obviously improved and the flexural strength increased by 53.5%.The compressive strength of EGP10,EGP20,and EGP30 increased by 49.12%,57.04%,and 65.34% after curing for 28 days,respectively.There were five obvious vibration peaks of 811 cm^-1,1 000 cm^-1,1 050 cm^-1,1 590cm^-1,and 3 400 cm^-1 in the geopolymer and the undisturbed metakaolin.More geopolymer gels were formed in the material and the microstructure was more compact.展开更多
Curing behavior of a model epoxies system (E-54/AG-80) with DDS as hardener was studied in this paper. Round disk compression mode DMA was executed to study the gel behaviors at different temperatures to determine the...Curing behavior of a model epoxies system (E-54/AG-80) with DDS as hardener was studied in this paper. Round disk compression mode DMA was executed to study the gel behaviors at different temperatures to determine the relationship between gel-time (t_ gel) and temperature. The cure kinetics was studied by dynamic DSC analysis. Parameters were obtained for establishing a phenomenological cure reaction model. The relationship between glass transition temperature (T_g) and cure degree (α) was also analyzed by both isothermal and dynamic DSC method based on DiBenedetto equation, which gave a mathematical description of T_g as a function of both time and temperature. Consequently, characteristic temperatures such as T_ g0, gelT_ g and T_ g∞ were determined. Finally, the Time-Temperature-Transition (TTT) diagram was designed based on the data and equations.展开更多
An experimental investigation is conducted to evaluate the potential degradation in the mechanical properties of an epoxy resin and unidirectional glass fiber-reinforced epoxy (GFRE) as a result of exposure to fluctua...An experimental investigation is conducted to evaluate the potential degradation in the mechanical properties of an epoxy resin and unidirectional glass fiber-reinforced epoxy (GFRE) as a result of exposure to fluctuating temperature. A commonly used room-cured epoxy resin and the GFRE are subjected to various numbers of thermal cycles (up to 1000 heating/cooling cycles). Mechanical tests are conducted to examine the influence of thermal cycles on the stiffness, ultimate strength and strain of the resin and its GFRE. The Fourier transform-Raman spectroscopy (FT-Raman) is conducted to investigate the influence of the thermal cycles on the resulting chemical changes and curing degree of the resin. In addition, the Differential Scanning Calorimetry (DSC) analysis is conducted to investigate the variation in the glass transition temperature (Tg) of the resin as a function of the applied thermal cycles.展开更多
基金This study is partially supported by the National Natural Science Foundation of China.
文摘The miscibility of the blend,composed of a bisphenol A epoxy resins (Diglycidyl ether of bisphenol A) (DGEBA) and poly(ethylene oxide) (PEG) and crosslinked by phthalic anhydride (PA) was studied using dynamic mechanical method. Single glass transition temperatures intermediate between the two pure components were observed for all blend levels. The secondary relaxation mechanism should relate to not only diester linkage, but also hydroxyether structural unit in the system. Fourier transform infrared spectroscopy (FTIR) is applied to study the curing reaction and intermolecular specific interaction of the system. The results indicate the PEO participates the crosslinking reaction, accelerates the curing reaction and make the reaction more perfect. The shifts of the hydroxyl band and carbonyl band demonstrate the presence of the intermolecular interaction in the cured blend. Moreover, the molecular interaction between the side hydroxyl in the hydroxyether units and the ether bond in PEO macromolecules is stronger.
基金funded by the National Natural Science(Grant No.52274015)。
文摘Sustained casing pressure(SCP)is a crucial issue in the oil and gas production lifecycle.Epoxy resins,exhibiting exceptional compressive strength,ductility,and shear bonding strength,have the potential to form reliable barriers.The injectivity and sealing capacity of the epoxy resin is crucial parameters for the success of shallow remediation operations.This study aimed to develop and assess a novel solid-free resin sealant as an alternative to Portland cement for mitigating fluid leakage.The investigation evaluated the viscosity,compressive strength,and brittleness index of the epoxy resin sealant,as well as its tangential and normal shear strengths in conjunction with casing steel.The flow characteristics and sealing abilities of conventional cement and epoxy resin were comparatively analyzed in cracks.The results showed that the application of a viscosity reducer facilitated control over the curing time of the epoxy resin,ranging from 1.5 to 6 h,and reduced the initial viscosity from 865.53 to 118.71 m Pa,s.The mechanical properties of the epoxy resin initially increased with a rise in curing agent content before experiencing a minor decrease.The epoxy resin containing 30%curing agent exhibited optimal mechanical properties.After a 14-day curing period,the epoxy resin's compressive strength reached81.37 MPa,2.12 times higher than that of cement,whereas the elastic modulus of cement was 2.99 times greater than that of the epoxy resin.The brittleness index of epoxy resin is only 3.42,demonstrating high flexibility and toughness.The tangential and normal shear strengths of the epoxy resin exceeded those of cement by 3.17 and 2.82 times,respectively.In a 0.5 mm-wide crack,the injection pressure of the epoxy resin remained below 0.075 MPa,indicating superior injection and flow capabilities.Conversely,the injection pressure of cement surged dramatically to 2.61 MPa within 5 min.The breakthrough pressure of0.5 PV epoxy resin reached 7.53 MPa,decreasing the crack's permeability to 0.02 D,a mere 9.49%of the permeability observed following cement plugging.Upon sealing a 2 mm-wide crack using epoxy resin,the maximum breakthrough pressure attained 5.47 MPa,3.48 times of cement.These results suggest that epoxy resin sealant can be employed safely and effectively to seal cracks in the cement.
文摘A series of novel liquid crystalline epoxides with lateral substituents were cured with anhydrides and the cure kinetics was investigated by non-isothermal DSC technique. The results showed that the lengths of lateral substituents have great effect on the value of Ea. The curing reaction became less active, when the liquid crystalline epoxides have long lateral substituents and were controlled by diffusion at the late stage of cure. A nematic structure was observed by POM and XRD.
基金The research was supported by the open fund from the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(SKJ-9805)
文摘This paper discusses the fundamental principle of microwave heating, and based on the advantages of microwave heating, use maleic anhydride as curing agent. The technology of microwave curing E44 epoxy resins is investigated, the mechanical properties of cured epoxy resin samples in different contents of curing agent by microwave and thermal curing methods are measured respectively, and then some experimental results for which are obtained. At last, this paper analyses why microwave curing can improve mechanical property of epoxy resin.
基金Project(2003AA84ts04) supported by the National High-Tech Research and Development Program of China
文摘Diglycidyl 4,5-epoxy tetrahydro phthalate/methyl tetrahydrophthalic anhydride (TDE-85/MeTHPA) epoxy resin modified by polyurethane (PU) was prepared with 1,4-butanediol (1,4-BDO), trimethylol propane (TMP) and polyurethane prepolymer synthesized by polypropylene glycol and toluene diisocynate. Chemical reaction and curing mechanism of this system were discussed by incorporating the results of infra spectrum analysis. The results indicate that the epoxy polymeric network I is obtained by the curing reaction between TDE-85 and MeTHPA, while the PU polymeric network II is obtained by the chain-extended and crosslinking reaction between 1,4-BDO, TMP and polyurethane prepolymer(PUP). The graft chemical bonds are formed between polymer networks I and II that therefore increase the degree of blend and compatibility between epoxy polymer and PU.
基金Funded by State Key Lab of Geohazard Prevention and Geoenvironment Protection,China(No.GZ2007-08)
文摘Cure behaviors and water up-take evaluation of a low cost, ecofriendly and water soluble epoxy resin prepared by reaction between epichlorohydrin and PEG400, PEG600 and PEG1000, respectively, were investigated using non-isothermal differential scanning calorimetry (DSC) and gravimetrical method, respectively. Factors affecting the cure behaviors as well as water up-take of waterborne epoxy resins, such as amount of triethylenetetramine (TETA) and triethylene diamine (TEDA), PEG molecular weight, curing temperature, were systematically investigated. The prepared water soluble epoxy resins can be cured under room temperature with the shape of the curing curves similar to that expected for an autocatalytic reaction.
文摘Microwave processing has great potential for improving composite manufacturing such as reduction of curing time, energy requirements and operational costs. In this paper, the effects of microwave irradiation for resin-curing of carbon fiber/epoxy resin composite that was composed of discontinuous carbon fibers of 130 μm or 3 mm were investigated. The mechanical properties of carbon fiber/epoxy resin composite cured by microwave irradiation for 20 min at 120°C were similar to ones of the sample prepared by conventional oven for 180 min at 120°C. Microwavecured carbon fiber/epoxy resin composite had higher glass transition temperature than the one prepared by conventional oven. The relation between curing time and flexural modulus indicated that the curing velocity of microwave-irradiated carbon fiber/epoxy resin composite was 9 times faster than the one prepared by conventional oven. Furthermore, activation energies for resincuring reaction on microwave and conventional-cured carbon fiber/epoxy resin composite were estimated. The resin-curing reaction in carbon fiber/epoxy resin composite was promoted by microwave irradiation.
文摘The possibility of curing of epoxy resin induced by femtosecond laser beam was explored through choosing different initators.Absorption spectroscopy, infrared spectroscopy(IR),stereomicroscopy and scanning electron microscopy(SEM0 were applied to analyze the structure of epoxy resin systems after irradiation with a femtosecond laser beam.The experimental results show that the epoxy resin systems containing diaryliodonium salts can be cared by irradiation of femtosecond laser pulse,while the systems containing benzoing can not be cured.It is found that diaryliodonium salts decompose under the irradiation of femtosecond lase pulse through multi(two)-photon absorption,initiating the ring-opening polymerization of epoxy resin.And the appearance of cured area has a sheet structure consisting of many tiny lamellar structures.
基金The project is supported by National Natural Science Foundation of China.
文摘The curing of a microgel-epoxy resin two phase polymer prepared by in situ copolymerization of unsaturated polyester with acrylic monomer was studied. The unsaturated unit reacted with N—H during the cure of the resin with ethylene diamine. The Michael type reaction was ten times more rapid than the addition of N—H to epoxide.This was accounted for the lower apparent activation energy of the curing of the two phase resin.
基金The work was financially supported by the National Science Foundation of China(Nos.20204005,50233030).
文摘Five secondary amine terminated poly(ester-amine)s (defined as PEA) with controlled molecular structures were synthesized through reacting excessive piperazine with phthalicdiglycol diacrylate (PDDA) and 1,1,1-trimethylolpropane triacrylate (TMPTA) at a constant secondary amine/acrylate group ratio of 1.5/1 and at different PDDA/TMPTA molar ratios. Both IR and ^1H-NMR spectra indicated that all acrylate groups were consumed in the reaction, based on which the structural parameters were calculated from the ^1H-NMR spectra. With decreasing PDDA/TMPTA ratio, the content of secondary amine, degree of branching, molecular weight, Tg and Td increased accordingly. These polymers were further used as both crosslinkers and flexibilizers for a linear epoxy resin E51 to form cured films under ambient condition. The gel content, relative hardness and Tg of the resulting films increased as PEA molecules changed from linear to highly branching structures. Due to the flexibility of PEA molecules, all the films possessed excellent mechanical performance.
基金This work was financially supported by the National Natural Science Foundation of China(No.20104008).
文摘Sub-micron sized phenolic epoxy resin waterborne particles were prepared by phase inversion emulsification. Micro-phase separation occurred during the curing process at high temperature. The as-prepared samples possessed one glass transition temperature (Tg) and two exothermal processes during DSC heating scannings. After being thermally treated above the exothermal peak temperature, they possessed two glass transition temperatures with the disappearance of exothermal peaks, whilst a core/shell structure was formed. This was likely related with the outward diffusion of reactive oligomers to the outer layer of particles.
文摘Based on three typical mechanisms (second-order, third-order and competitive mechanisms) for the curing reactions of the epoxy resins with amines, a pair of the kinetic equations (for primary and secondary aminations) was presented to explain the uniformity and relationship among the three different kinetic mechanisms of the reactions. The presented macro-equations were deduced from the kinetic micro-equations by the statistics method. And the constitutive equations were verified by experimental data at different reaction times and temperatures (95°C, 60°C and 39°C), taking diglycidyl ether of bisphenol A (DGEBA) /ethyleneamine (EA) as a model.
文摘A new method concerning with the simultaneous reinforcing and toughening of polypropylene (PP) was reported. Dynamical cure of the epoxy resin was successfully applied in the PP/maleic anhydride-grafted styrene-ethylene-butylene-styrene (SEBS) triblock copolymer, and the obtained blends named as dynamically cured PP/MAH-g-SEBS/epoxy blends. The stiffness and toughness of the blends are in a good balance, and MAH-g-SEBS was acted as not only an impact modifier but also a compatibilizer. The structure of the dynamically cured PP/MAH-g-SEBS/epoxy blends is the embedding of the epoxy particles by the MAH-g- SEBS.C2009 Xue Liang Jiang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
文摘This paper presents a preliminary study on the dielectric properties and curing of three different types of epoxy resins mixed at various stoichiometric mixture of hardener, flydust and aluminium powder under microwave energy. In this work, the curing process of thin layers of epoxy resins using microwave radiation was investigated as an alternative technique that can' be implemented to develop a new rapid product development technique. In this study it was observed that the curing time and temperature were a function of the percentage of hardener and fillers presence in the epoxy resins. Initially dielectric properties of epoxy resins with hardener were measured which was directly correlated to the curing process in order to understand the properties of cured specimen. Tensile tests were conducted on the three different types of epoxy resins with hardener and fillers. Modifying dielectric properties of the mixtures a significant decrease in curing time was observed. In order to study the microstructural changes of cured specimen the morphology of the fracture surface was carried out by using scanning electron microscopy.
文摘The cure kinetics of diglycidyl ether of bisphenol A (DGEBA) with hyperbranched poly (3-hydroxyphenyl) phosphate(HHPP) as the curing agent was investigated by means of non-isothermal differential scanning calorimetry (DSC) at various heating rates. The results were compared with the corresponding results by using 1,3-dihydroxybenzene(DHB) as a model compound. The results show that HHPP can enhance the cure reaction of DGEBA, resulting in the decrease of the peak temperature of the curing curve as well as the decrease of the activation energy because of the flexible --P--O-- groups in the backbone of HHPP. However, both the activation energy of the cured polymer and the peak temperature of the curing curve are increased with DHB as a curing agent. The cure kinetics of the DGEBA/HHPP system was calculated by using the isoconversional method given by Malek. It was found that the two-parameter autocatalytic model(Sestak-Berggren equation) is the most adequate one to describe the cure kinetics of the studied System at various heating rates. The obtained non-isothermal DSC curves from the experimental data show the results being accordant with those theoretically calculated.
基金from the Special Fund for the Program for Zhejiang Provincial Natural Science Foundation of China(LZ16C160001)National Key Research and Development Program(2017YFD0601105),the National Natural Science Foundation of China(Grant No.21806142)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY20B070002).
文摘It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin;however,this has remained a huge challenge.Herein,an eco-friendly,low-cost,and facile-fabricated bio-based hyperbranched toughener,carboxylic acid-functionalized tannic acid(CATA),was successfully prepared and applicated to the preparation of solvent-free epoxy resins.The mechanical performance,morphology,structural characterization,and thermal characterization of toughened epoxy resin system were studied.The toughened epoxy resin system with only 1.0wt%CATA reached the highest impact strength,111%higher than the neat epoxy resin system.Notably,the tensile strength and elongation at break of toughened epoxy resin systems increased moderately with increasing CATA loading.Nonphase-separated hybrids with significant toughening effect were obtained.Additionally,the thermal stabilities of toughened epoxy resin systems decreased with increasing CATA loading.This study provides an eco-friendly,cost-effective,and facile approach for the preparation of high-performance,solvent-free epoxy resins with potential for practical applications in sealing integrated circuits and electrical devices fields.
基金the National Natural Science Foundation of China(No.51574055)。
文摘By using NaOH and Na2SiO3 as the activator,the mechanical properties and shrinkage of the geopolymer after incorporation of 0%,10%,20%,and 30% epoxy resin were investigated.The mechanism of epoxy resin toughening metakaolin based geopolymer was analyzed by X-ray diffraction,scanning electron microscopy and Fourier transform infrared spectroscopy.It was shown that with the increases of epoxy resin,the shrinkage performance was obviously improved and the flexural strength increased by 53.5%.The compressive strength of EGP10,EGP20,and EGP30 increased by 49.12%,57.04%,and 65.34% after curing for 28 days,respectively.There were five obvious vibration peaks of 811 cm^-1,1 000 cm^-1,1 050 cm^-1,1 590cm^-1,and 3 400 cm^-1 in the geopolymer and the undisturbed metakaolin.More geopolymer gels were formed in the material and the microstructure was more compact.
文摘Curing behavior of a model epoxies system (E-54/AG-80) with DDS as hardener was studied in this paper. Round disk compression mode DMA was executed to study the gel behaviors at different temperatures to determine the relationship between gel-time (t_ gel) and temperature. The cure kinetics was studied by dynamic DSC analysis. Parameters were obtained for establishing a phenomenological cure reaction model. The relationship between glass transition temperature (T_g) and cure degree (α) was also analyzed by both isothermal and dynamic DSC method based on DiBenedetto equation, which gave a mathematical description of T_g as a function of both time and temperature. Consequently, characteristic temperatures such as T_ g0, gelT_ g and T_ g∞ were determined. Finally, the Time-Temperature-Transition (TTT) diagram was designed based on the data and equations.
文摘An experimental investigation is conducted to evaluate the potential degradation in the mechanical properties of an epoxy resin and unidirectional glass fiber-reinforced epoxy (GFRE) as a result of exposure to fluctuating temperature. A commonly used room-cured epoxy resin and the GFRE are subjected to various numbers of thermal cycles (up to 1000 heating/cooling cycles). Mechanical tests are conducted to examine the influence of thermal cycles on the stiffness, ultimate strength and strain of the resin and its GFRE. The Fourier transform-Raman spectroscopy (FT-Raman) is conducted to investigate the influence of the thermal cycles on the resulting chemical changes and curing degree of the resin. In addition, the Differential Scanning Calorimetry (DSC) analysis is conducted to investigate the variation in the glass transition temperature (Tg) of the resin as a function of the applied thermal cycles.