In view of problems existing in the detection of the traditional hydraulic system, such as the large volume of sensor and the low measurement accuracy, a new one-piece target type flow sensor is designed and researche...In view of problems existing in the detection of the traditional hydraulic system, such as the large volume of sensor and the low measurement accuracy, a new one-piece target type flow sensor is designed and researched based on fiber Bragg grating (FBG). A compact structure is designed, which is convenient to be dismantled, processed, and installed, based on the analysis of the principle of FBG and the structure of target type flow sensor. The force of target put in fluid flow is turned into the FBG wavelength drift, with a corresponding relationship. The problem on the cross sensitivities of the temperature and strain is solved effectively by using double FBG symmetrically pasted on the both surfaces of the cantilever. The impact on the fluid state is analyzed through simulation in the software FLUENT, and the results show that the impact was smaller than that of the traditional structure. The results of experiments in the hydraulic system show that there is a good linear relationship between the change in the dual FBG central wavelength and mass loading on the target sheet has a good linear relationship, and the sensitivity is twice that of a single FBG sensitivity.展开更多
基金This work was supported by the National Natural Science Foundation of China (No. 41404022) and the Shanxi National Science Foundation (No.2015JM4128).
文摘In view of problems existing in the detection of the traditional hydraulic system, such as the large volume of sensor and the low measurement accuracy, a new one-piece target type flow sensor is designed and researched based on fiber Bragg grating (FBG). A compact structure is designed, which is convenient to be dismantled, processed, and installed, based on the analysis of the principle of FBG and the structure of target type flow sensor. The force of target put in fluid flow is turned into the FBG wavelength drift, with a corresponding relationship. The problem on the cross sensitivities of the temperature and strain is solved effectively by using double FBG symmetrically pasted on the both surfaces of the cantilever. The impact on the fluid state is analyzed through simulation in the software FLUENT, and the results show that the impact was smaller than that of the traditional structure. The results of experiments in the hydraulic system show that there is a good linear relationship between the change in the dual FBG central wavelength and mass loading on the target sheet has a good linear relationship, and the sensitivity is twice that of a single FBG sensitivity.