Traditional vibrating screen usually adopts the linear centralized excitation mode,which causes the difficulty in particles loosening and low screening efficiency.The variable elliptical vibrating screen(VEVS)trajecto...Traditional vibrating screen usually adopts the linear centralized excitation mode,which causes the difficulty in particles loosening and low screening efficiency.The variable elliptical vibrating screen(VEVS)trajectory is regulated to adapt the material mass along the direction of the screen length,improving the particles distribution as well as the screening efficiency.In this work,a theoretical model was developed for analyzing the screen surface motion law during VEVS-based screening process.An equation was obtained to show the relationship between the horizontal amplitude and the vertical amplitude.The materials kinetic characteristics were studied by using high-speed camera during screening process.Compared with equal-amplitude screen(EAS),the material moving velocity was increased by 13.03%on the first half but decreased by 3.52% on the second half,and the total screening time was reduced by 9.42% by using VEVS.In addition,-6 mm screening test was carried out.At the length of VEVS equaled to 1.2 m,the screening efficiency and the total misplaced material content were 92.50% and 2.90%,respectively.However,the screening efficiency was 89.91% and the total misplaced material content was 3.76% during EAS-based screening process.Furthermore,when external moisture is 5.96%,the screening efficiency of VEVS could reach 86.95%.The 2 TKB50113 type VEVS with double-layered screen surface used in Huoshizui Coal Mine was 5.0 m in width and 11.3 m in length.The areas of single layer and double layer were 56.5 and 113 m~2,respectively.In industrial production,the processing capacity was 2500-3000 t/h and the screening efficiency was larger than 90%.展开更多
Geopolymer-lightweight aggregate refractory concrete (GLARC) was prepared with geopolymer and lightweight aggregate. The mechanical property and heat-resistance (950 ℃) of GLARC were investigated. The effects of size...Geopolymer-lightweight aggregate refractory concrete (GLARC) was prepared with geopolymer and lightweight aggregate. The mechanical property and heat-resistance (950 ℃) of GLARC were investigated. The effects of size of aggregate and mass ratio of geopolymer to aggregate on mechanical and thermal properties were also studied. The results show that the highest compressive strength of the heated refractory concrete is 43.3 MPa,and the strength loss is only 42%. The mechanical property and heat-resistance are influenced by the thickness of geopolymer covered with aggregate,which can be expressed as the quantity of geopolymer on per surface area of aggregate. In order to show the relationship between the thickness of geopolymer covered with aggregate and the thermal property of concrete,equal thickness model is presented,which provides a reference for the mix design of GLARC. For the haydite sand with size of 1.18-4.75 mm,the best amount of geopolymer per surface area of aggregate should be in the range of 0.300-0.500 mg/mm2.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. U1903132 and 51904301)the Natural Science Foundation of Jiangsu Province (No. BK20180650)。
文摘Traditional vibrating screen usually adopts the linear centralized excitation mode,which causes the difficulty in particles loosening and low screening efficiency.The variable elliptical vibrating screen(VEVS)trajectory is regulated to adapt the material mass along the direction of the screen length,improving the particles distribution as well as the screening efficiency.In this work,a theoretical model was developed for analyzing the screen surface motion law during VEVS-based screening process.An equation was obtained to show the relationship between the horizontal amplitude and the vertical amplitude.The materials kinetic characteristics were studied by using high-speed camera during screening process.Compared with equal-amplitude screen(EAS),the material moving velocity was increased by 13.03%on the first half but decreased by 3.52% on the second half,and the total screening time was reduced by 9.42% by using VEVS.In addition,-6 mm screening test was carried out.At the length of VEVS equaled to 1.2 m,the screening efficiency and the total misplaced material content were 92.50% and 2.90%,respectively.However,the screening efficiency was 89.91% and the total misplaced material content was 3.76% during EAS-based screening process.Furthermore,when external moisture is 5.96%,the screening efficiency of VEVS could reach 86.95%.The 2 TKB50113 type VEVS with double-layered screen surface used in Huoshizui Coal Mine was 5.0 m in width and 11.3 m in length.The areas of single layer and double layer were 56.5 and 113 m~2,respectively.In industrial production,the processing capacity was 2500-3000 t/h and the screening efficiency was larger than 90%.
基金Project(2009CB623201) supported by the National Basic Research Program of ChinaProject(G0510) supported by the Key Laboratory for Refractories and High-temperature Ceramics of Hubei Province, China
文摘Geopolymer-lightweight aggregate refractory concrete (GLARC) was prepared with geopolymer and lightweight aggregate. The mechanical property and heat-resistance (950 ℃) of GLARC were investigated. The effects of size of aggregate and mass ratio of geopolymer to aggregate on mechanical and thermal properties were also studied. The results show that the highest compressive strength of the heated refractory concrete is 43.3 MPa,and the strength loss is only 42%. The mechanical property and heat-resistance are influenced by the thickness of geopolymer covered with aggregate,which can be expressed as the quantity of geopolymer on per surface area of aggregate. In order to show the relationship between the thickness of geopolymer covered with aggregate and the thermal property of concrete,equal thickness model is presented,which provides a reference for the mix design of GLARC. For the haydite sand with size of 1.18-4.75 mm,the best amount of geopolymer per surface area of aggregate should be in the range of 0.300-0.500 mg/mm2.