In this paper we introduce a new kind of the mixed Hermite--Fejér interpolation with boundary condi- tions and obtain the mean approximation order.Our results include a new theorem of Varma and Prasad.Be- sides,w...In this paper we introduce a new kind of the mixed Hermite--Fejér interpolation with boundary condi- tions and obtain the mean approximation order.Our results include a new theorem of Varma and Prasad.Be- sides,we also get some other results about the mean approximation.展开更多
In this paper we introduce the two-parameter operators on Abelian group and establish their interpolation theorems of approximation, which are extensions of the interpolation theorems for nonlinear best approximation ...In this paper we introduce the two-parameter operators on Abelian group and establish their interpolation theorems of approximation, which are extensions of the interpolation theorems for nonlinear best approximation by R. Devore and are suitable for the approximation of oprators.展开更多
In this paper, supose Γ be a boundary of a Jordan domain D and Γ satisfied Альпер condition, the order that rational type interpolating operators at Fejer's points of f(z)∈C(Γ) converge to f(z) in the se...In this paper, supose Γ be a boundary of a Jordan domain D and Γ satisfied Альпер condition, the order that rational type interpolating operators at Fejer's points of f(z)∈C(Γ) converge to f(z) in the sense of uniformly convergence is obtained.展开更多
This article is a improvement on author's early work (Acta Mathematica Scientia, Vol.30 No.2 Ser.A 2010). In this article, there are two new contributions: 1) The restrictive conditions on approximation domain bo...This article is a improvement on author's early work (Acta Mathematica Scientia, Vol.30 No.2 Ser.A 2010). In this article, there are two new contributions: 1) The restrictive conditions on approximation domain boundary is improved essentially. 2) The Fejer points is extended by perturbed Fejer points with stable order of approximation.展开更多
The results of accurate order of uniform approximation and simultaneous approximation in the early work "Jackson Type Theorems on Complex Curves" are improved from Fejer points to disturbed Fejer points in this arti...The results of accurate order of uniform approximation and simultaneous approximation in the early work "Jackson Type Theorems on Complex Curves" are improved from Fejer points to disturbed Fejer points in this article. Furthermore, the stability of convergence of Tn,∈(f,z) with disturbed sample values f(z^*) + Sk are also proved in this article.展开更多
In this paper, an interpolation polynomial operator F n(f; l,x) is constructed based on the zeros of a kind of Jacobi polynomials as the interpolation nodes. For any continuous function f(x)∈C b [-1,1] ...In this paper, an interpolation polynomial operator F n(f; l,x) is constructed based on the zeros of a kind of Jacobi polynomials as the interpolation nodes. For any continuous function f(x)∈C b [-1,1] (0≤b≤l) F n(f; l,x) converges to f(x) uniformly, where l is an odd number.展开更多
We study the optimal order of approximation for |x|α (0 < α < 1) by Lagrange interpolation polynomials based on Chebyshev nodes of the first kind. It is proved that the Jackson order of approximation is attained.
In the smoothed particle hydrodynamics (SPH) method, a meshless interpolation scheme is needed for the unknown function in order to discretize the governing equation.A particle approximation method has so far been use...In the smoothed particle hydrodynamics (SPH) method, a meshless interpolation scheme is needed for the unknown function in order to discretize the governing equation.A particle approximation method has so far been used for this purpose.Traditional particle interpolation (TPI) is simple and easy to do, but its low accuracy has become an obstacle to its wider application.This can be seen in the cases of particle disorder arrangements and derivative calculations.There are many different methods to improve accuracy, with the moving least square (MLS) method one of the most important meshless interpolation methods.Unfortunately, it requires complex matrix computing and so is quite time-consuming.The authors developed a simpler scheme, called higher-order particle interpolation (HPI).This scheme can get more accurate derivatives than the MLS method, and its function value and derivatives can be obtained simultaneously.Although this scheme was developed for the SPH method, it has been found useful for other meshless methods.展开更多
In this paper, we derive two higher order multipoint methods for solving nonlinear equations. The methodology is based on Ostrowski’s method and further developed by using cubic interpolation process. The adaptation ...In this paper, we derive two higher order multipoint methods for solving nonlinear equations. The methodology is based on Ostrowski’s method and further developed by using cubic interpolation process. The adaptation of this strategy increases the order of Ostrowski’s method from four to eight and its efficiency index from 1.587 to 1.682. The methods are compared with closest competitors in a series of numerical examples. Moreover, theoretical order of convergence is verified on the examples.展开更多
This paper discover that when disturbance occurs on Chebyshev knot, so long as the disturbance amount does not exceed , then the course of the quasi Hemite-Fejer interpolation on the disturbed Chebyshev knot still ke...This paper discover that when disturbance occurs on Chebyshev knot, so long as the disturbance amount does not exceed , then the course of the quasi Hemite-Fejer interpolation on the disturbed Chebyshev knot still keeps the converge uniformly properlies for any continuous function on . Besides,the paper estimates the convergance rate.展开更多
In this work, the well-known problem put forward by S N Bernstein in 1930 is studied in a deep step. An operator is constructed by revising double interpolation nodes. It is proved that the operator converges to arbit...In this work, the well-known problem put forward by S N Bernstein in 1930 is studied in a deep step. An operator is constructed by revising double interpolation nodes. It is proved that the operator converges to arbitrary continuous functions uniformly and the convergence order is the best.展开更多
In this paper,a new third type S.N.Bernstein interpolation polynomial H n(f;x,r) with zeros of the Chebyshev ploynomial of the second kind is constructed. H n(f;x,r) converge uniformly on [-1,1] for any continuous fun...In this paper,a new third type S.N.Bernstein interpolation polynomial H n(f;x,r) with zeros of the Chebyshev ploynomial of the second kind is constructed. H n(f;x,r) converge uniformly on [-1,1] for any continuous function f(x) . The convergence order is the best order if \{f(x)∈C j[-1,1],\}0jr, where r is an odd natural number.展开更多
In this paper, a general family of derivative-free n + 1-point iterative methods using n + 1 evaluations of the function and a general family of n-point iterative methods using n evaluations of the function and only o...In this paper, a general family of derivative-free n + 1-point iterative methods using n + 1 evaluations of the function and a general family of n-point iterative methods using n evaluations of the function and only one evaluation of its derivative are constructed by the inverse interpolation with the memory on the previous step for solving the simple root of a nonlinear equation. The order and order of convergence of them are proved respectively. Finally, the proposed methods and the basins of attraction are demonstrated by the numerical examples.展开更多
The aim of this paper is to study the weak integral convergence of Kergin interpolation. The results of the weighted integral convergence and the weighted (partial) derivatives integral convergence of Kergin interpola...The aim of this paper is to study the weak integral convergence of Kergin interpolation. The results of the weighted integral convergence and the weighted (partial) derivatives integral convergence of Kergin interpolation polynomial for the smooth functions on the unit disk were obtained in the paper. Those generalized Liang's main results were acquired in 1998 to the more extensive situation. At the same time, the estimation of convergence rate of Kergin interpolation polynomial is given by means of introducing a new kind of smooth norm.展开更多
Some quadrature formulae for the numerical evaluation of singular integrals of arbitrary order are established and both the estimate of remainder and the convergence of each quadrature formula derived here are also gi...Some quadrature formulae for the numerical evaluation of singular integrals of arbitrary order are established and both the estimate of remainder and the convergence of each quadrature formula derived here are also given.展开更多
The 'o' saturation theorem and the degree of Lwp, approximation by (0 - q' - q) type Hermite-Fejer interpolating polynomials for mean convergence are obtained.
In this paper, a new higher order Wilson element is presented, and the convergence is proved. Then the interpolation postprocessing technique is used to obtain the global superconvergence and posterior error estimate ...In this paper, a new higher order Wilson element is presented, and the convergence is proved. Then the interpolation postprocessing technique is used to obtain the global superconvergence and posterior error estimate of higher accuracy of this new element for the Sobolev type equations.展开更多
In this paper we derived a continuous linear multistep method (LMM) with step number k = 5 through collocation and interpolation techniques using power series as basis function for approximate solution. An order nine ...In this paper we derived a continuous linear multistep method (LMM) with step number k = 5 through collocation and interpolation techniques using power series as basis function for approximate solution. An order nine p-stable scheme is developed which was used to solve the third order initial value problems in ordinary differential equation without first reducing to a system of first order equations. Taylor’s series algorithm of the same order was developed to implement our method. The result obtained compared favourably with existing methods.展开更多
In this paper, a new two-step Newton-type method with third-order convergence for solving systems of nonlinear equations is proposed. We construct the new method based on the integral interpolation of Newton’s method...In this paper, a new two-step Newton-type method with third-order convergence for solving systems of nonlinear equations is proposed. We construct the new method based on the integral interpolation of Newton’s method. Its cubic convergence and error equation are proved theoretically, and demonstrated numerically. Its application to systems of nonlinear equations and boundary-value problems of nonlinear ODEs are shown as well in the numerical examples.展开更多
文摘In this paper we introduce a new kind of the mixed Hermite--Fejér interpolation with boundary condi- tions and obtain the mean approximation order.Our results include a new theorem of Varma and Prasad.Be- sides,we also get some other results about the mean approximation.
文摘In this paper we introduce the two-parameter operators on Abelian group and establish their interpolation theorems of approximation, which are extensions of the interpolation theorems for nonlinear best approximation by R. Devore and are suitable for the approximation of oprators.
文摘In this paper, supose Γ be a boundary of a Jordan domain D and Γ satisfied Альпер condition, the order that rational type interpolating operators at Fejer's points of f(z)∈C(Γ) converge to f(z) in the sense of uniformly convergence is obtained.
基金supported by NSF of Henan Province P. R. China(974050900)
文摘This article is a improvement on author's early work (Acta Mathematica Scientia, Vol.30 No.2 Ser.A 2010). In this article, there are two new contributions: 1) The restrictive conditions on approximation domain boundary is improved essentially. 2) The Fejer points is extended by perturbed Fejer points with stable order of approximation.
基金Supported by NSF of Henan Province of China(20001110001)
文摘The results of accurate order of uniform approximation and simultaneous approximation in the early work "Jackson Type Theorems on Complex Curves" are improved from Fejer points to disturbed Fejer points in this article. Furthermore, the stability of convergence of Tn,∈(f,z) with disturbed sample values f(z^*) + Sk are also proved in this article.
文摘In this paper, an interpolation polynomial operator F n(f; l,x) is constructed based on the zeros of a kind of Jacobi polynomials as the interpolation nodes. For any continuous function f(x)∈C b [-1,1] (0≤b≤l) F n(f; l,x) converges to f(x) uniformly, where l is an odd number.
文摘We study the optimal order of approximation for |x|α (0 < α < 1) by Lagrange interpolation polynomials based on Chebyshev nodes of the first kind. It is proved that the Jackson order of approximation is attained.
基金Supported by the National Natural Science Foundation of China under Grant No.10572041,50779008Doctoral Fund of Ministry of Education of China under Grant No.20060217009
文摘In the smoothed particle hydrodynamics (SPH) method, a meshless interpolation scheme is needed for the unknown function in order to discretize the governing equation.A particle approximation method has so far been used for this purpose.Traditional particle interpolation (TPI) is simple and easy to do, but its low accuracy has become an obstacle to its wider application.This can be seen in the cases of particle disorder arrangements and derivative calculations.There are many different methods to improve accuracy, with the moving least square (MLS) method one of the most important meshless interpolation methods.Unfortunately, it requires complex matrix computing and so is quite time-consuming.The authors developed a simpler scheme, called higher-order particle interpolation (HPI).This scheme can get more accurate derivatives than the MLS method, and its function value and derivatives can be obtained simultaneously.Although this scheme was developed for the SPH method, it has been found useful for other meshless methods.
文摘In this paper, we derive two higher order multipoint methods for solving nonlinear equations. The methodology is based on Ostrowski’s method and further developed by using cubic interpolation process. The adaptation of this strategy increases the order of Ostrowski’s method from four to eight and its efficiency index from 1.587 to 1.682. The methods are compared with closest competitors in a series of numerical examples. Moreover, theoretical order of convergence is verified on the examples.
文摘This paper discover that when disturbance occurs on Chebyshev knot, so long as the disturbance amount does not exceed , then the course of the quasi Hemite-Fejer interpolation on the disturbed Chebyshev knot still keeps the converge uniformly properlies for any continuous function on . Besides,the paper estimates the convergance rate.
基金Foundation item: Supported by the National Natural Science Foundation of China(10626045)
文摘In this work, the well-known problem put forward by S N Bernstein in 1930 is studied in a deep step. An operator is constructed by revising double interpolation nodes. It is proved that the operator converges to arbitrary continuous functions uniformly and the convergence order is the best.
文摘In this paper,a new third type S.N.Bernstein interpolation polynomial H n(f;x,r) with zeros of the Chebyshev ploynomial of the second kind is constructed. H n(f;x,r) converge uniformly on [-1,1] for any continuous function f(x) . The convergence order is the best order if \{f(x)∈C j[-1,1],\}0jr, where r is an odd natural number.
文摘In this paper, a general family of derivative-free n + 1-point iterative methods using n + 1 evaluations of the function and a general family of n-point iterative methods using n evaluations of the function and only one evaluation of its derivative are constructed by the inverse interpolation with the memory on the previous step for solving the simple root of a nonlinear equation. The order and order of convergence of them are proved respectively. Finally, the proposed methods and the basins of attraction are demonstrated by the numerical examples.
文摘The aim of this paper is to study the weak integral convergence of Kergin interpolation. The results of the weighted integral convergence and the weighted (partial) derivatives integral convergence of Kergin interpolation polynomial for the smooth functions on the unit disk were obtained in the paper. Those generalized Liang's main results were acquired in 1998 to the more extensive situation. At the same time, the estimation of convergence rate of Kergin interpolation polynomial is given by means of introducing a new kind of smooth norm.
基金Supported by NNSF and RFDP of Higher Education of China.
文摘Some quadrature formulae for the numerical evaluation of singular integrals of arbitrary order are established and both the estimate of remainder and the convergence of each quadrature formula derived here are also given.
基金This work is supported by the Doctor Foundation (No:02.T20102-06) and the Post Doctor Foundation of Ningbo University.
文摘The 'o' saturation theorem and the degree of Lwp, approximation by (0 - q' - q) type Hermite-Fejer interpolating polynomials for mean convergence are obtained.
基金the National Natural Science Foundation of China(10671184)
文摘In this paper, a new higher order Wilson element is presented, and the convergence is proved. Then the interpolation postprocessing technique is used to obtain the global superconvergence and posterior error estimate of higher accuracy of this new element for the Sobolev type equations.
文摘In this paper we derived a continuous linear multistep method (LMM) with step number k = 5 through collocation and interpolation techniques using power series as basis function for approximate solution. An order nine p-stable scheme is developed which was used to solve the third order initial value problems in ordinary differential equation without first reducing to a system of first order equations. Taylor’s series algorithm of the same order was developed to implement our method. The result obtained compared favourably with existing methods.
文摘In this paper, a new two-step Newton-type method with third-order convergence for solving systems of nonlinear equations is proposed. We construct the new method based on the integral interpolation of Newton’s method. Its cubic convergence and error equation are proved theoretically, and demonstrated numerically. Its application to systems of nonlinear equations and boundary-value problems of nonlinear ODEs are shown as well in the numerical examples.