Blades are one of the important components on aircraft engines.If they break due to vibration failure,the normal operation of the entire engine will be offected.Therefore,it is necessary to measure their natural frequ...Blades are one of the important components on aircraft engines.If they break due to vibration failure,the normal operation of the entire engine will be offected.Therefore,it is necessary to measure their natural frequency before installing them on the engine to avoid resonance.At present,most blade vibration testing systems require manual operation by operators,which has high requirements for operators and the testing process is also very cumbersome.Therefore,the testing efficiency is low and cannot meet the needs of efficient testing.To solve the current problems of low testing efficiency and high operational requirements,a high-precision and high-efficiency automatic test system is designed.The testing accuracy of this system can reach ±1%,and the testing efficiency is improved by 37% compared to manual testing.Firstly,the influence of compression force and vibration exciter position on natural frequency test is analyzed by amplitude-frequency curve,so as to calibrate servo cylinder and fourdimensional motion platform.Secondly,the sine wave signal is used as the excitation to sweep the blade linearly,and the natural frequency is determined by the amplitude peak in the frequency domain.Finally,the accuracy experiment and efficiency experiment are carried out on the developed test system,whose results verify its high efficiency and high precision.展开更多
This paper proposes an autopilot system that can be used to control the small scale rotorcraft during the flight test for linear-frequency-domain system identification. The input frequency-sweep is generated automatic...This paper proposes an autopilot system that can be used to control the small scale rotorcraft during the flight test for linear-frequency-domain system identification. The input frequency-sweep is generated automatically as part of the autopilot control command. Therefore the bandwidth coverage and consistency of the frequency-sweep are guaranteed to produce high quality data for system identification. Beside that, we can set the safety parameters during the flight test (maximum roll/pitch value, minimum altitude, etc.) so the safety of the whole flight test is guaranteed. This autopilot system is validated using hardware in the loop simulator for hover flight condition.展开更多
The permeation parameters have been calculated by forefathers on the basis of permeation theory by means of the Slug test (Yin, Zheng, 1992) and the restoration curves of well level. We are interested in oscillation ...The permeation parameters have been calculated by forefathers on the basis of permeation theory by means of the Slug test (Yin, Zheng, 1992) and the restoration curves of well level. We are interested in oscillation of the well level when we make Slug test. Both the permeation parameters and frequency parameters, i.e., natural period and damping coefficients of well aquifer, have been calculated on the basis of vibration theory by means of the oscillation curves. Not only this has given a new method, but also the different response of well level to seismic waves has been explained by it in theory.展开更多
To solve the problems of abnormal larger, abnormal lower or even negative of target yield and fertilizing amount recommended by part of non-typical fertilizer effect equations using agricultural experiments and statis...To solve the problems of abnormal larger, abnormal lower or even negative of target yield and fertilizing amount recommended by part of non-typical fertilizer effect equations using agricultural experiments and statistical analysis software,Yangzhou analyzer(2.2), regression analysis of Excel, which objected to local actual production, the study adopted the principle and method of basic knowledge and the frequency of using probability theory, and carried out statistical analysis on the rape field fertilizer experiment data by frequency analysis method, the rape yield after optimizing fertilizing amount was 1 732.4 kg/hm^2, the ranges of N, P and K optimal combinations were: N=210.36-149.64 kg/hm^2,P2O5=81.89-58.11 kg/hm^2, K2O=81.89-58.11 kg/hm^2,which was consistent with local actual production. This study was based on frequency analysis, using weighted average method to determine the production combinations of different yield objectives, hereinto, the combinations with high yield, high frequency of occurrence(dependable crop) and fertilizer-saving were viewed as the optimizing production measures, and they had the merits of increasing fertilization decision-making information, reducing or avoiding the risk of small probability event. The results of this study can solve the problem of abnormal values fertilizing amount and target yield recommended by non-typical fertilizer effect function, which did not accord with local actual production, caused by Yangzhou analyzer(2.2), regression analysis of Excel, and DPS statistical analysis software. For the fertilizer effect function equation established by regression analysis which did not reach significance level using variance analysis, whether the method can be adapted to for carrying out fertilization decision-making, recommending optimization combinations of N, P and K fertilizers and yield under optimized fertilizing amount should be further researched in future working practice.展开更多
Many conventional methods of testing strong and pulsed electromagnetic fields,the ones used in radars for example,had deficiencies due to the difficulty in obtaining simultaneous information about the electromagnetic ...Many conventional methods of testing strong and pulsed electromagnetic fields,the ones used in radars for example,had deficiencies due to the difficulty in obtaining simultaneous information about the electromagnetic field's peak both in the time domain and in the frequency domain.With regard to this problem,after analyzing the time-domain and the frequency-domain characteristics of radar pulsed signals,we propose a new time-frequency combination test method based on the correction of the test parameters,as well as its correction method at different bandwidths.The test method is applied in a quick test of a high-power pulsed radar signal,and the corrected results have error less than 1 dB in both the time domain and the frequency domain,which indicates that the proposed time-frequency combined method is effective in testing strong and pulsed electromagnetic fields.展开更多
A novel design and implementation of frequency superposition testing power supply for induction motor is proposed. An equivalent power using dynamic space voltage vector synthesis is generated to replace the two separ...A novel design and implementation of frequency superposition testing power supply for induction motor is proposed. An equivalent power using dynamic space voltage vector synthesis is generated to replace the two separate powers of the traditional method. The principle of frequency superposition testing is firstly introduced, and then the detailed design and implementation of the digital frequency superposition power are given. The simulation of the power supply system shows the promising results. Finally, experimental results validate the feasibility and reliability of the proposed power.展开更多
Using environmental random vibration as the excitation,traditional accelerometer method,non-contact video method and non-contact laser method were employed to determine the natural frequency of Kunyu River footbridge....Using environmental random vibration as the excitation,traditional accelerometer method,non-contact video method and non-contact laser method were employed to determine the natural frequency of Kunyu River footbridge.All the results of these three methods are close to 2.70 Hz,which are concordant with each other and hence credible.展开更多
Modulated high frequency (HF) heating of the ionosphere provides a feasible means of artificially generating ex- tremely low frequency (ELF)/very low frequency (VLF) whistler waves, which can leak into the inner...Modulated high frequency (HF) heating of the ionosphere provides a feasible means of artificially generating ex- tremely low frequency (ELF)/very low frequency (VLF) whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with high energy electrons. Combining the ray tracing method and test particle simulations, we evaluate the effects of energetic electron resonant scattering driven by the discrete, multi-frequency arti- ficially generated ELF/VLF waves. The simulation results indicate a stochastic behavior of electrons and a linear profile of pitch angle and kinetic energy variations averaged over all test electrons. These features are similar to those associated with single-frequency waves. The computed local diffusion coefficients show that, although the momentum diffusion of relativistic electrons due to artificial ELF/VLF whistlers with a nominal amplitude of ~ 1 pT is minor, the pitch angle scattering can be notably efficient at low pitch angles near the loss cone, which supports the feasibility of artificial triggering of multi-frequency ELF/VLF whistler waves for the removal of high energy electrons from the magnetosphere. We also investigate the dependences of diffusion coefficients on the frequency interval (△f) of the discrete, multi-frequency waves. We find that there is a threshold value of Af for which the net diffusion coefficient of multi-frequency whistlers is inversely proportional to △f (proportional to the frequency components Nw) when △f is below the threshold value but it remains unchanged with increasing Af when △f is larger than the threshold value. This is explained as being due to the fact that the resonant scattering effect of broadband waves is the sum of the effects of each frequency in the 'effective frequency band'. Our results suggest that the modulation frequency of HF heating of the ionosphere can be appropriately selected with reasonable frequency intervals so that better performance of controlled precipitation of high energy electrons in the plasmasphere by artificial ELF/VLF whistler waves can be achieved.展开更多
Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tr...Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tracked on-line by building a time-varying parameter model, and then the relevant parameter spectrum can be obtained. The feasibility and advantages of the method are examined by digital simulation. The results of FTPVS at low-speed wind-tunnel promise the engineering application perspective of the method.展开更多
Aim To derive the error formulae for the algorithm of frequency response computation. Methods This algorithm was introduced theoretically, the error sources of the algorithm were analyzed and the formulae of the mai...Aim To derive the error formulae for the algorithm of frequency response computation. Methods This algorithm was introduced theoretically, the error sources of the algorithm were analyzed and the formulae of the main error were derived. Results The repeatability and stability of the processing results of the algorithm are better than those measured by 1250 Frequency Analysor. Conclusion The error formulae derived are theoretically right and practically valid.展开更多
Based on a series of cyclic triaxial tests, the effect of cyclic frequency on the undrained behaviors of undisturbed marine clay is investigated. For a given dynamic stress ratio, the accumulated pore water pressure a...Based on a series of cyclic triaxial tests, the effect of cyclic frequency on the undrained behaviors of undisturbed marine clay is investigated. For a given dynamic stress ratio, the accumulated pore water pressure and dynamic strain increase with the number of cycles. There exists a threshold value for both the accumulated pore water pressure and dynamic strain, below which the effect of cyclic frequency is very small, but above which the accumulated pore water pressure and dynamic strain increase intensely with the decrease of cyclic frequency for a given number of cycles. The dynamic strength increases with the increase of cyclic frequency, whereas the effect of cyclic frequency on it gradually diminishes to zero when the number of cycles is large enough, and the dynamic strengths at different frequencies tend to the same limiting minimum dynamic strength. The test results demonstrate that the reasons for the frequency effect on the undrained soil behaviors are both the creep effect induced by the loading rate and the decrease of sample effective confining pressure caused by the accumulated pore water pressure.展开更多
Although magnetotelluric sounding method applied to the land is advanced, there are many difficulties when it is applied to marine environment, one of which is how to lay magnetic field sensors down to the seafloor to...Although magnetotelluric sounding method applied to the land is advanced, there are many difficulties when it is applied to marine environment, one of which is how to lay magnetic field sensors down to the seafloor to complete measurements. To protect the magnetic field sensors from intense erosion and high pressure, suitable high-pressure sealed cabins must be designed to load them. For the consideration of magnetic measurement and marine operation, the sealed pressure cabin should be nonmagnetic and transportable. Among all optional materials, LC4 super.hard aluminum alloy has the highest performance of price/quality ratio to make the sealed pressure cabin. However, it does not mean that the high-pressure sealed cabin made using LC4 will be perfect in performance. In fact, because of its weak magnetism, the pressure cabin made using LC4 has distorting effect on frequency responses of the magnetic field sensors sealed in it. This distorting effect does not affect the use of the magnetic field sensor, but if we want to eliminate its effect, we should study it by experimental measurements. In our experiment tests, frequency sweep magnetic field as excitation signal was used, and then responses of the magnetic field sensor before and after being loaded into the high-pressure sealed cabin were measured. Finally, normalized abnormal curves for the frequency responses were obtained, through which we could show how the high-pressure sealed cabin produces effects on the responses of the magnetic field sensor. Experimental results suggest that the response distortion induced by the sealed pressure cabin appears on mid- and high-frequency areas. Using experimental results as standardization data, the frequency responses collected from seafloor magnetotelluric measurements can be corrected to restore real information about the seafloor field source.展开更多
This article extends a signal-based approach formerly proposed by the authors, which utilizes the fractal dimension of time frequency feature (FDTFF) of displacements, for earthquake damage detection of moment resis...This article extends a signal-based approach formerly proposed by the authors, which utilizes the fractal dimension of time frequency feature (FDTFF) of displacements, for earthquake damage detection of moment resist frame (MRF), and validates the approach with shaking table tests. The time frequency feature (TFF) of the relative displacement at measured story is defined as the real part of the coefficients of the analytical wavelet transform. The fractal dimension (FD) is to quantify the TFF within the fundamental frequency band using box counting method. It is verified that the FDTFFs at all stories of the linear MRF are identical with the help of static condensation method and modal superposition principle, while the FDTFFs at the stories with localized nonlinearities due to damage will be different from those at the stories without nonlinearities using the reverse-path methodology. By comparing the FDTFFs of displacements at measured stories in a structure, the damage-induced nonlinearity of the structure under strong ground motion can be detected and localized. Finally shaking table experiments on a 1:8 scale sixteen-story three-bay steel MRF with added frictional dampers, which generate local nonlinearities, are conducted to validate the approach.展开更多
In the present work, the effect of hexagonal cell size of the core on the fundamental natural frequency of FRP honey-comb sandwich panels has been analyzed both experimentally and by finite element technique. Experime...In the present work, the effect of hexagonal cell size of the core on the fundamental natural frequency of FRP honey-comb sandwich panels has been analyzed both experimentally and by finite element technique. Experimental Modal tests were conducted on hexagonal cell honeycombs ranging in size from 8 mm to 20 mm maintaining the facing thickness constant at around 1mm with two different boundary conditions viz C-F-F-F and C-F-C-F. The traditional “strike method” has been used to measure the vibration properties. The modal characteristics of the specimens have been obtained by studying its impulse response. Each specimen has been subjected to impulses through a hard tipped hammer which is provided with a force transducer and the response has been measured through the accelerometer. The impulse and the response are processed through a computer aided FFT Analyzing test system in order to extract the modal parameters with the aid of software. Theoretical investigations have been attempted with appropriate assumptions to understand the behavior of the honeycomb sandwich panels during dynamic loading and to validate experimental results. Finite Element modeling has been done treating the facing as an orthotropic laminate and Core as orthotropic with different elastic constants as recommended in the literature. The results are presented which show that the theoretical model can accurately predict the fundamental frequency and how honeycombs with difference cell size will perform under dynamic loads.展开更多
Fifty-six patients with chest pain underwent selective coronaryangiography,radionuclide ventriculography (RNV) and frequency domaincardiography (FCG) to evaluate left ventricular function in coronary artery dis-ease (...Fifty-six patients with chest pain underwent selective coronaryangiography,radionuclide ventriculography (RNV) and frequency domaincardiography (FCG) to evaluate left ventricular function in coronary artery dis-ease (CAD).The sensitivity,specificity and accuracy of FCG were 87.5%,77.8%and 82.9%,respectively,which were slightly less than those of RNV (92.5%,88.9% and 90.8%,respectively).The changes of FCG scores were negatively corre-lated with changes of LVEF (r=-0.586,P【0.01),and TS (r=-0.679,P【0.01).These results indicate that FCG may be useful for the evaluation of leftventricular function in patients with CAD.展开更多
Extremely low frequency (ELF) magnetic field susceptibility is an index of visual display unit (VDU) quality and performance. This paper provided field measured data on the susceptibility for a large variety of VDUs. ...Extremely low frequency (ELF) magnetic field susceptibility is an index of visual display unit (VDU) quality and performance. This paper provided field measured data on the susceptibility for a large variety of VDUs. A test rig was built to study the susceptibility of VDUs to magnetic fields at fundamental and third harmonic frequencies. It was found that the susceptibility level is largely dependent on refresh rate of the VDU and the orientation of the external ELF field. It was also found that the VDU susceptibility is significantly increased in the presence of harmonic frequency magnetic fields. About 30% of the tested samples have susceptibility levels higher than that stated in IEC 1000-4-8 standard.展开更多
For a vibration system with 2 DOF of bend and torsion, its critical flutter wind speed can be calculated by using complex mode frequency iteration (CMFI) method based on MatLab 5.2, the results of which are in agree ...For a vibration system with 2 DOF of bend and torsion, its critical flutter wind speed can be calculated by using complex mode frequency iteration (CMFI) method based on MatLab 5.2, the results of which are in agree with those acquired by wind tunnel test. Not only critical flutter wind speed, but also vibration characteristic of a system under different wind speeds can be determined. CMFI method is suitable for both of separated flow torsional flutter and classic coupling flutter analysis, which is presented by flutter analysis of an ideal thin plate and a bluff bridge deck. Furthermore, it is proved through the investigation of the relationship between flutter derivatives and its critical flutter wind speed that coupling aerodynamic derivatives are necessary for classic coupling flutter to occur.]展开更多
The purpose of the present study was to examine the effect of the frequency of mastication on cerebral activation and task scores for computational tasks. Eleven healthy subjects participated in the present study (nin...The purpose of the present study was to examine the effect of the frequency of mastication on cerebral activation and task scores for computational tasks. Eleven healthy subjects participated in the present study (nine women, two men). Subjects carried out the Uchida-Kraepelin Test for 15 min before and after chewing tasteless gum for five minutes. The oxygenation of the left prefrontal cortex was monitored by near-infrared spectroscopy during the computational tasks. Task scores did not differ significantly according to chewing frequency (p > 0.05). Conversely, the oxygenation value measured after mastication at a chewing frequency of 110 times/minute (Hz) was significantly higher than that observed before mastication (p < 0.05). Meanwhile, before and after levels of oxygenation did not differ significantly for chewing frequencies of 30 Hz and 70 Hz (p > 0.05 for both). The results of the present study suggest that tasteless mastication does not enhance calculation performance, while a high mastication frequency demonstrates an influence on oxygenation. However, our study indicates that chewing tasteless gum per se does not increase cognitive performance.展开更多
Severe vibration of underground structures may be induced under blast loads. According to the characteristics of the explosion-induced ground shock wave, a new-type damper, inverse control magneto-rheological(MR) da...Severe vibration of underground structures may be induced under blast loads. According to the characteristics of the explosion-induced ground shock wave, a new-type damper, inverse control magneto-rheological(MR) damper was designed to control the vibration, The high-frequency performance test of the MR damper was carried out on the small shaking table. It is shown that the performance can be modeled by use of the modified Bouc-Wen model, and the Parameters of the model keep stable in the range of 15--50 Hz.展开更多
基金supported by the National Natural Science Foundation of China (No.51975293)Aeronautical Science Foundation of China (No.2019ZD052010)Postgraduate Research & Practice Innovation Program of NUAA (No.xcxjh20230502)。
文摘Blades are one of the important components on aircraft engines.If they break due to vibration failure,the normal operation of the entire engine will be offected.Therefore,it is necessary to measure their natural frequency before installing them on the engine to avoid resonance.At present,most blade vibration testing systems require manual operation by operators,which has high requirements for operators and the testing process is also very cumbersome.Therefore,the testing efficiency is low and cannot meet the needs of efficient testing.To solve the current problems of low testing efficiency and high operational requirements,a high-precision and high-efficiency automatic test system is designed.The testing accuracy of this system can reach ±1%,and the testing efficiency is improved by 37% compared to manual testing.Firstly,the influence of compression force and vibration exciter position on natural frequency test is analyzed by amplitude-frequency curve,so as to calibrate servo cylinder and fourdimensional motion platform.Secondly,the sine wave signal is used as the excitation to sweep the blade linearly,and the natural frequency is determined by the amplitude peak in the frequency domain.Finally,the accuracy experiment and efficiency experiment are carried out on the developed test system,whose results verify its high efficiency and high precision.
文摘This paper proposes an autopilot system that can be used to control the small scale rotorcraft during the flight test for linear-frequency-domain system identification. The input frequency-sweep is generated automatically as part of the autopilot control command. Therefore the bandwidth coverage and consistency of the frequency-sweep are guaranteed to produce high quality data for system identification. Beside that, we can set the safety parameters during the flight test (maximum roll/pitch value, minimum altitude, etc.) so the safety of the whole flight test is guaranteed. This autopilot system is validated using hardware in the loop simulator for hover flight condition.
文摘The permeation parameters have been calculated by forefathers on the basis of permeation theory by means of the Slug test (Yin, Zheng, 1992) and the restoration curves of well level. We are interested in oscillation of the well level when we make Slug test. Both the permeation parameters and frequency parameters, i.e., natural period and damping coefficients of well aquifer, have been calculated on the basis of vibration theory by means of the oscillation curves. Not only this has given a new method, but also the different response of well level to seismic waves has been explained by it in theory.
基金Supported by Fiscal Subsidy Project Fund of National Soil Testing and Formulated Fertilization(Yun Cai Nong[2009]2045)~~
文摘To solve the problems of abnormal larger, abnormal lower or even negative of target yield and fertilizing amount recommended by part of non-typical fertilizer effect equations using agricultural experiments and statistical analysis software,Yangzhou analyzer(2.2), regression analysis of Excel, which objected to local actual production, the study adopted the principle and method of basic knowledge and the frequency of using probability theory, and carried out statistical analysis on the rape field fertilizer experiment data by frequency analysis method, the rape yield after optimizing fertilizing amount was 1 732.4 kg/hm^2, the ranges of N, P and K optimal combinations were: N=210.36-149.64 kg/hm^2,P2O5=81.89-58.11 kg/hm^2, K2O=81.89-58.11 kg/hm^2,which was consistent with local actual production. This study was based on frequency analysis, using weighted average method to determine the production combinations of different yield objectives, hereinto, the combinations with high yield, high frequency of occurrence(dependable crop) and fertilizer-saving were viewed as the optimizing production measures, and they had the merits of increasing fertilization decision-making information, reducing or avoiding the risk of small probability event. The results of this study can solve the problem of abnormal values fertilizing amount and target yield recommended by non-typical fertilizer effect function, which did not accord with local actual production, caused by Yangzhou analyzer(2.2), regression analysis of Excel, and DPS statistical analysis software. For the fertilizer effect function equation established by regression analysis which did not reach significance level using variance analysis, whether the method can be adapted to for carrying out fertilization decision-making, recommending optimization combinations of N, P and K fertilizers and yield under optimized fertilizing amount should be further researched in future working practice.
文摘Many conventional methods of testing strong and pulsed electromagnetic fields,the ones used in radars for example,had deficiencies due to the difficulty in obtaining simultaneous information about the electromagnetic field's peak both in the time domain and in the frequency domain.With regard to this problem,after analyzing the time-domain and the frequency-domain characteristics of radar pulsed signals,we propose a new time-frequency combination test method based on the correction of the test parameters,as well as its correction method at different bandwidths.The test method is applied in a quick test of a high-power pulsed radar signal,and the corrected results have error less than 1 dB in both the time domain and the frequency domain,which indicates that the proposed time-frequency combined method is effective in testing strong and pulsed electromagnetic fields.
文摘A novel design and implementation of frequency superposition testing power supply for induction motor is proposed. An equivalent power using dynamic space voltage vector synthesis is generated to replace the two separate powers of the traditional method. The principle of frequency superposition testing is firstly introduced, and then the detailed design and implementation of the digital frequency superposition power are given. The simulation of the power supply system shows the promising results. Finally, experimental results validate the feasibility and reliability of the proposed power.
基金Ministry of Science and Technology of China for sponsoring the"Cooperation Research on the Dynamic Safety and Serviceability of Public Structures Servicing for Human"(No.2010DFB74280)between Beijing Institute of Technology and Ruhr-University Bochum
文摘Using environmental random vibration as the excitation,traditional accelerometer method,non-contact video method and non-contact laser method were employed to determine the natural frequency of Kunyu River footbridge.All the results of these three methods are close to 2.70 Hz,which are concordant with each other and hence credible.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41204120 and 41304130)the Fundamental Research Funds for the Central Universities(Grant No.2042014kf0251)
文摘Modulated high frequency (HF) heating of the ionosphere provides a feasible means of artificially generating ex- tremely low frequency (ELF)/very low frequency (VLF) whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with high energy electrons. Combining the ray tracing method and test particle simulations, we evaluate the effects of energetic electron resonant scattering driven by the discrete, multi-frequency arti- ficially generated ELF/VLF waves. The simulation results indicate a stochastic behavior of electrons and a linear profile of pitch angle and kinetic energy variations averaged over all test electrons. These features are similar to those associated with single-frequency waves. The computed local diffusion coefficients show that, although the momentum diffusion of relativistic electrons due to artificial ELF/VLF whistlers with a nominal amplitude of ~ 1 pT is minor, the pitch angle scattering can be notably efficient at low pitch angles near the loss cone, which supports the feasibility of artificial triggering of multi-frequency ELF/VLF whistler waves for the removal of high energy electrons from the magnetosphere. We also investigate the dependences of diffusion coefficients on the frequency interval (△f) of the discrete, multi-frequency waves. We find that there is a threshold value of Af for which the net diffusion coefficient of multi-frequency whistlers is inversely proportional to △f (proportional to the frequency components Nw) when △f is below the threshold value but it remains unchanged with increasing Af when △f is larger than the threshold value. This is explained as being due to the fact that the resonant scattering effect of broadband waves is the sum of the effects of each frequency in the 'effective frequency band'. Our results suggest that the modulation frequency of HF heating of the ionosphere can be appropriately selected with reasonable frequency intervals so that better performance of controlled precipitation of high energy electrons in the plasmasphere by artificial ELF/VLF whistler waves can be achieved.
文摘Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tracked on-line by building a time-varying parameter model, and then the relevant parameter spectrum can be obtained. The feasibility and advantages of the method are examined by digital simulation. The results of FTPVS at low-speed wind-tunnel promise the engineering application perspective of the method.
文摘Aim To derive the error formulae for the algorithm of frequency response computation. Methods This algorithm was introduced theoretically, the error sources of the algorithm were analyzed and the formulae of the main error were derived. Results The repeatability and stability of the processing results of the algorithm are better than those measured by 1250 Frequency Analysor. Conclusion The error formulae derived are theoretically right and practically valid.
文摘Based on a series of cyclic triaxial tests, the effect of cyclic frequency on the undrained behaviors of undisturbed marine clay is investigated. For a given dynamic stress ratio, the accumulated pore water pressure and dynamic strain increase with the number of cycles. There exists a threshold value for both the accumulated pore water pressure and dynamic strain, below which the effect of cyclic frequency is very small, but above which the accumulated pore water pressure and dynamic strain increase intensely with the decrease of cyclic frequency for a given number of cycles. The dynamic strength increases with the increase of cyclic frequency, whereas the effect of cyclic frequency on it gradually diminishes to zero when the number of cycles is large enough, and the dynamic strengths at different frequencies tend to the same limiting minimum dynamic strength. The test results demonstrate that the reasons for the frequency effect on the undrained soil behaviors are both the creep effect induced by the loading rate and the decrease of sample effective confining pressure caused by the accumulated pore water pressure.
基金This paper is supported by the National "863" Program in the Tenth Five-Year-Plan (No. 2002AA615020)Eleventh Five-Year-Plan (No. 2006AA09A201)the Focused Subject Program of Beijing (No. XK104910598).
文摘Although magnetotelluric sounding method applied to the land is advanced, there are many difficulties when it is applied to marine environment, one of which is how to lay magnetic field sensors down to the seafloor to complete measurements. To protect the magnetic field sensors from intense erosion and high pressure, suitable high-pressure sealed cabins must be designed to load them. For the consideration of magnetic measurement and marine operation, the sealed pressure cabin should be nonmagnetic and transportable. Among all optional materials, LC4 super.hard aluminum alloy has the highest performance of price/quality ratio to make the sealed pressure cabin. However, it does not mean that the high-pressure sealed cabin made using LC4 will be perfect in performance. In fact, because of its weak magnetism, the pressure cabin made using LC4 has distorting effect on frequency responses of the magnetic field sensors sealed in it. This distorting effect does not affect the use of the magnetic field sensor, but if we want to eliminate its effect, we should study it by experimental measurements. In our experiment tests, frequency sweep magnetic field as excitation signal was used, and then responses of the magnetic field sensor before and after being loaded into the high-pressure sealed cabin were measured. Finally, normalized abnormal curves for the frequency responses were obtained, through which we could show how the high-pressure sealed cabin produces effects on the responses of the magnetic field sensor. Experimental results suggest that the response distortion induced by the sealed pressure cabin appears on mid- and high-frequency areas. Using experimental results as standardization data, the frequency responses collected from seafloor magnetotelluric measurements can be corrected to restore real information about the seafloor field source.
基金National Natural Science Foundation under Grant No.51161120359Ministry of Education under Grant No.20112302110050Special Fund for Earthquake Scientific Research in the Public Interest under Grant No.201308003
文摘This article extends a signal-based approach formerly proposed by the authors, which utilizes the fractal dimension of time frequency feature (FDTFF) of displacements, for earthquake damage detection of moment resist frame (MRF), and validates the approach with shaking table tests. The time frequency feature (TFF) of the relative displacement at measured story is defined as the real part of the coefficients of the analytical wavelet transform. The fractal dimension (FD) is to quantify the TFF within the fundamental frequency band using box counting method. It is verified that the FDTFFs at all stories of the linear MRF are identical with the help of static condensation method and modal superposition principle, while the FDTFFs at the stories with localized nonlinearities due to damage will be different from those at the stories without nonlinearities using the reverse-path methodology. By comparing the FDTFFs of displacements at measured stories in a structure, the damage-induced nonlinearity of the structure under strong ground motion can be detected and localized. Finally shaking table experiments on a 1:8 scale sixteen-story three-bay steel MRF with added frictional dampers, which generate local nonlinearities, are conducted to validate the approach.
文摘In the present work, the effect of hexagonal cell size of the core on the fundamental natural frequency of FRP honey-comb sandwich panels has been analyzed both experimentally and by finite element technique. Experimental Modal tests were conducted on hexagonal cell honeycombs ranging in size from 8 mm to 20 mm maintaining the facing thickness constant at around 1mm with two different boundary conditions viz C-F-F-F and C-F-C-F. The traditional “strike method” has been used to measure the vibration properties. The modal characteristics of the specimens have been obtained by studying its impulse response. Each specimen has been subjected to impulses through a hard tipped hammer which is provided with a force transducer and the response has been measured through the accelerometer. The impulse and the response are processed through a computer aided FFT Analyzing test system in order to extract the modal parameters with the aid of software. Theoretical investigations have been attempted with appropriate assumptions to understand the behavior of the honeycomb sandwich panels during dynamic loading and to validate experimental results. Finite Element modeling has been done treating the facing as an orthotropic laminate and Core as orthotropic with different elastic constants as recommended in the literature. The results are presented which show that the theoretical model can accurately predict the fundamental frequency and how honeycombs with difference cell size will perform under dynamic loads.
文摘Fifty-six patients with chest pain underwent selective coronaryangiography,radionuclide ventriculography (RNV) and frequency domaincardiography (FCG) to evaluate left ventricular function in coronary artery dis-ease (CAD).The sensitivity,specificity and accuracy of FCG were 87.5%,77.8%and 82.9%,respectively,which were slightly less than those of RNV (92.5%,88.9% and 90.8%,respectively).The changes of FCG scores were negatively corre-lated with changes of LVEF (r=-0.586,P【0.01),and TS (r=-0.679,P【0.01).These results indicate that FCG may be useful for the evaluation of leftventricular function in patients with CAD.
文摘Extremely low frequency (ELF) magnetic field susceptibility is an index of visual display unit (VDU) quality and performance. This paper provided field measured data on the susceptibility for a large variety of VDUs. A test rig was built to study the susceptibility of VDUs to magnetic fields at fundamental and third harmonic frequencies. It was found that the susceptibility level is largely dependent on refresh rate of the VDU and the orientation of the external ELF field. It was also found that the VDU susceptibility is significantly increased in the presence of harmonic frequency magnetic fields. About 30% of the tested samples have susceptibility levels higher than that stated in IEC 1000-4-8 standard.
文摘For a vibration system with 2 DOF of bend and torsion, its critical flutter wind speed can be calculated by using complex mode frequency iteration (CMFI) method based on MatLab 5.2, the results of which are in agree with those acquired by wind tunnel test. Not only critical flutter wind speed, but also vibration characteristic of a system under different wind speeds can be determined. CMFI method is suitable for both of separated flow torsional flutter and classic coupling flutter analysis, which is presented by flutter analysis of an ideal thin plate and a bluff bridge deck. Furthermore, it is proved through the investigation of the relationship between flutter derivatives and its critical flutter wind speed that coupling aerodynamic derivatives are necessary for classic coupling flutter to occur.]
文摘The purpose of the present study was to examine the effect of the frequency of mastication on cerebral activation and task scores for computational tasks. Eleven healthy subjects participated in the present study (nine women, two men). Subjects carried out the Uchida-Kraepelin Test for 15 min before and after chewing tasteless gum for five minutes. The oxygenation of the left prefrontal cortex was monitored by near-infrared spectroscopy during the computational tasks. Task scores did not differ significantly according to chewing frequency (p > 0.05). Conversely, the oxygenation value measured after mastication at a chewing frequency of 110 times/minute (Hz) was significantly higher than that observed before mastication (p < 0.05). Meanwhile, before and after levels of oxygenation did not differ significantly for chewing frequencies of 30 Hz and 70 Hz (p > 0.05 for both). The results of the present study suggest that tasteless mastication does not enhance calculation performance, while a high mastication frequency demonstrates an influence on oxygenation. However, our study indicates that chewing tasteless gum per se does not increase cognitive performance.
基金Supported by National Nature Fund and National Civil-Defense Office
文摘Severe vibration of underground structures may be induced under blast loads. According to the characteristics of the explosion-induced ground shock wave, a new-type damper, inverse control magneto-rheological(MR) damper was designed to control the vibration, The high-frequency performance test of the MR damper was carried out on the small shaking table. It is shown that the performance can be modeled by use of the modified Bouc-Wen model, and the Parameters of the model keep stable in the range of 15--50 Hz.