Calotropis procera(Aiton)W.T.Aiton,belonging to the family Apocynaceae,is C3 evergreen plant species in arid and semi-arid areas of the Punjab Province,Pakistan.It grows in a variety of habitats like salt affected and...Calotropis procera(Aiton)W.T.Aiton,belonging to the family Apocynaceae,is C3 evergreen plant species in arid and semi-arid areas of the Punjab Province,Pakistan.It grows in a variety of habitats like salt affected and waterlogged area,desert/semi-desert,roadside,wasteland,graveyard,forest,crop field,coastline,and river/canal bank.A total of 12 populations growing in different ecological regions were sampled to evaluate their growth,physio-biochemical,and anatomical responses to specific environmental condition.Population adapted to desert/semi-desert showed vigorous growth(plant height,shoot length,and number of leaves),enhanced photosynthetic level(chlorophyll a,chlorophyll b,carotenoids,and total chlorophyll),and apparent anatomical modifications such as increased stem radius,cuticle thickness,storage parenchyma tissues(cortex and pith),and vascular bundles in stems,while the maximum of midrib and lamina thickness,epidermal cells,cuticle thickness,cortical proportion,abaxial stomatal density,and its area in leaves.There was high plasticity in structural and functional features of these populations,which enable them to survive and tolerate under such hot and dry desert environment.Population of saline areas exhibited very critical modifications to sustain under salt prone environment.At physiological level,it possesses the maximum amount of organic osmolytes(glycine betaine and proline)and antioxidants(superoxide dismutase(SOD),catalase(CAT),and peroxidase(POD)),while at anatomical level,it showed intensive sclerification,large phloem region(inner and outer),pith parenchyma cells,and metaxylem vessels in stems and leaves.The population of dry mountains showed very distinctive features,such as increased shoot ionic contents(K+and Ca2+),collenchyma and sclerenchyma thickness in stems,trichomes size,and numerous small stomata on abaxial surface of leaves.It is concluded that no definite or precise single character can be taken as a yardstick for adjudging the biomass production in this rubber bush weed population.展开更多
Taking the rubber torsion bushing of a certain type of all-terrain tracked vehicle as the research object,a theoretical model of torsional stiffness was proposed according to the non-linear characteristics of rubber c...Taking the rubber torsion bushing of a certain type of all-terrain tracked vehicle as the research object,a theoretical model of torsional stiffness was proposed according to the non-linear characteristics of rubber components and structural feature of the suspension. Simulations were carried out under different working conditions to obtain root mean square of vertical weighted acceleration as the evaluation index for ride performance of the all-terrain tracked vehicle,with a dynamics model of the whole vehicle based on the theoretical model of the torsional stiffness and standard road roughness as excitation input. Response surface method was used to establish the parametric optimization model of the torsional stiffness. The evaluation index showed that ride performance of the vehicle with optimized torsional stiffness model of suspension was improved compared with previous model fromexperiment. The torsional stiffness model of rubber bushing provided a theoretical basis for the design of the rubber torsion bushing in light tracked vehicles.展开更多
In order to study the influence of the structural parameters of the rubber bush on its radial stiffness, the constitutive relation of rubber materiel is used to obtain the calculation formula of the dimensionless radi...In order to study the influence of the structural parameters of the rubber bush on its radial stiffness, the constitutive relation of rubber materiel is used to obtain the calculation formula of the dimensionless radial stiffness coefficient. The obtained theoretical result is consistent with previous research results in both long rubber bushes and short rubber bushes. The simulation case was conducted by the finite element method to verify the correctness of the theory. The axial compression experiment was conducted to obtain the parameters needed in the simulation. The result shows that the percentage difference between the theoretical result and the simulation one is only 2.75%. A series of simulations were conducted to compare with previous work, and the largest magnitude of the percentage difference is only about 5%. Finally, the radial stiffness experiment was conducted by using a dynamic vibration absorber, and the influence of the structural parameters of the rubber bush on its radial stiffness is obtained. The result shows that the radial stiffness of the rubber bush increases with the increase in the length and the inner radius, but decreases with the increase in the outer radius.展开更多
Inspired by the safe landing of cats falling from high altitudes,a bionic flexible rubber bushing structure is proposed and its motion characteristics are systematically studied to explore its potential application in...Inspired by the safe landing of cats falling from high altitudes,a bionic flexible rubber bushing structure is proposed and its motion characteristics are systematically studied to explore its potential application in the suppression of vibration.The convex hull structure on the bushing surface is abstracted from the cat’s claw pad,and the hyper-viscoelastic model is selected as the constitutive model of the rubber material.In addition,the design with the best vibration damping effect is finally obtained by reasonably adjusting the amount of radial compression and distribution of bionic structures.Finally,under the same conditions,the test results of the dynamic characteristics of the bushing verify the accuracy of the simulation results.Research results show that the convex hull bionic structure designed in this paper can effectively change the motion characteristics of the rubber bushing under various working conditions,which provides new inspiration or potential possibility for the design of rubber bushing in the future.展开更多
文摘Calotropis procera(Aiton)W.T.Aiton,belonging to the family Apocynaceae,is C3 evergreen plant species in arid and semi-arid areas of the Punjab Province,Pakistan.It grows in a variety of habitats like salt affected and waterlogged area,desert/semi-desert,roadside,wasteland,graveyard,forest,crop field,coastline,and river/canal bank.A total of 12 populations growing in different ecological regions were sampled to evaluate their growth,physio-biochemical,and anatomical responses to specific environmental condition.Population adapted to desert/semi-desert showed vigorous growth(plant height,shoot length,and number of leaves),enhanced photosynthetic level(chlorophyll a,chlorophyll b,carotenoids,and total chlorophyll),and apparent anatomical modifications such as increased stem radius,cuticle thickness,storage parenchyma tissues(cortex and pith),and vascular bundles in stems,while the maximum of midrib and lamina thickness,epidermal cells,cuticle thickness,cortical proportion,abaxial stomatal density,and its area in leaves.There was high plasticity in structural and functional features of these populations,which enable them to survive and tolerate under such hot and dry desert environment.Population of saline areas exhibited very critical modifications to sustain under salt prone environment.At physiological level,it possesses the maximum amount of organic osmolytes(glycine betaine and proline)and antioxidants(superoxide dismutase(SOD),catalase(CAT),and peroxidase(POD)),while at anatomical level,it showed intensive sclerification,large phloem region(inner and outer),pith parenchyma cells,and metaxylem vessels in stems and leaves.The population of dry mountains showed very distinctive features,such as increased shoot ionic contents(K+and Ca2+),collenchyma and sclerenchyma thickness in stems,trichomes size,and numerous small stomata on abaxial surface of leaves.It is concluded that no definite or precise single character can be taken as a yardstick for adjudging the biomass production in this rubber bush weed population.
文摘Taking the rubber torsion bushing of a certain type of all-terrain tracked vehicle as the research object,a theoretical model of torsional stiffness was proposed according to the non-linear characteristics of rubber components and structural feature of the suspension. Simulations were carried out under different working conditions to obtain root mean square of vertical weighted acceleration as the evaluation index for ride performance of the all-terrain tracked vehicle,with a dynamics model of the whole vehicle based on the theoretical model of the torsional stiffness and standard road roughness as excitation input. Response surface method was used to establish the parametric optimization model of the torsional stiffness. The evaluation index showed that ride performance of the vehicle with optimized torsional stiffness model of suspension was improved compared with previous model fromexperiment. The torsional stiffness model of rubber bushing provided a theoretical basis for the design of the rubber torsion bushing in light tracked vehicles.
基金The Scientific Innovation Research of Graduate Students in Jiangsu Province(No.KYLX16-0186)the National Science and Technology M ajor Project(No.2013ZX04012032)
文摘In order to study the influence of the structural parameters of the rubber bush on its radial stiffness, the constitutive relation of rubber materiel is used to obtain the calculation formula of the dimensionless radial stiffness coefficient. The obtained theoretical result is consistent with previous research results in both long rubber bushes and short rubber bushes. The simulation case was conducted by the finite element method to verify the correctness of the theory. The axial compression experiment was conducted to obtain the parameters needed in the simulation. The result shows that the percentage difference between the theoretical result and the simulation one is only 2.75%. A series of simulations were conducted to compare with previous work, and the largest magnitude of the percentage difference is only about 5%. Finally, the radial stiffness experiment was conducted by using a dynamic vibration absorber, and the influence of the structural parameters of the rubber bush on its radial stiffness is obtained. The result shows that the radial stiffness of the rubber bush increases with the increase in the length and the inner radius, but decreases with the increase in the outer radius.
基金The authors gratefully acknowledge the financial supports from the Jilin Provincial Scientific and Technological Department(20220201123GX).
文摘Inspired by the safe landing of cats falling from high altitudes,a bionic flexible rubber bushing structure is proposed and its motion characteristics are systematically studied to explore its potential application in the suppression of vibration.The convex hull structure on the bushing surface is abstracted from the cat’s claw pad,and the hyper-viscoelastic model is selected as the constitutive model of the rubber material.In addition,the design with the best vibration damping effect is finally obtained by reasonably adjusting the amount of radial compression and distribution of bionic structures.Finally,under the same conditions,the test results of the dynamic characteristics of the bushing verify the accuracy of the simulation results.Research results show that the convex hull bionic structure designed in this paper can effectively change the motion characteristics of the rubber bushing under various working conditions,which provides new inspiration or potential possibility for the design of rubber bushing in the future.