The reasonable prior information between the parameters in the adjustment processing can significantly improve the precision of the parameter solution. Based on the principle of equality constraints, we establish the ...The reasonable prior information between the parameters in the adjustment processing can significantly improve the precision of the parameter solution. Based on the principle of equality constraints, we establish the mixed additive and multiplicative random error model with equality constraints and derive the weighted least squares iterative solution of the model. In addition, aiming at the ill-posed problem of the coefficient matrix, we also propose the ridge estimation iterative solution of ill-posed mixed additive and multiplicative random error model with equality constraints based on the principle of ridge estimation method and derive the U-curve method to determine the ridge parameter. The experimental results show that the weighted least squares iterative solution can obtain more reasonable parameter estimation and precision information than existing solutions, verifying the feasibility of applying the equality constraints to the mixed additive and multiplicative random error model. Furthermore, the ridge estimation iterative solution can obtain more accurate parameter estimation and precision information than the weighted least squares iterative solution.展开更多
A trust-region algorithm is presented for a nonlinear optimization problem of equality-constraints. The characterization of the algorithm is using inexact gradient information. Global convergence results are demonstra...A trust-region algorithm is presented for a nonlinear optimization problem of equality-constraints. The characterization of the algorithm is using inexact gradient information. Global convergence results are demonstrated where the gradient values are obeyed a simple relative error condition.展开更多
The Gauss-Markov (GM) model and the Errors-in-Variables (EIV) model are frequently used to perform 3D coordinate transformations in geodesy and engineering surveys. In these applications, because the observation e...The Gauss-Markov (GM) model and the Errors-in-Variables (EIV) model are frequently used to perform 3D coordinate transformations in geodesy and engineering surveys. In these applications, because the observation errors in original coordinates system are also taken into account, the latter is more accurate and reasonable than the former. Although the Weighted Total Least Squares (WTLS) technique has been intro- duced into coordinate transformations as the measured points are heteroscedastic and correlated, the Variance- Covariance Matrix (VCM) of observations is restricted by a particular structure, namely, only the correlations of each points are taken into account. Because the 3D datum transformation with large rotation angle is a non- linear problem, the WTLS is no longer suitable in this ease. In this contribution, we suggested the nonlinear WTLS adjustments with equality constraints (NWTLS-EC) for 3D datum transformation with large rotation an- gle, which removed the particular structure restriction on the VCM. The Least Squares adjustment with Equality (LSE) constraints is employed to solve NWTLS-EC as the nonlinear model has been linearized, and an iterative algorithm is proposed with the LSE solution. A simulation study of 3D datum transformation with large rotation angle is given to insight into the feasibility of our algorithm at last.展开更多
A new fully fuzzy linear programming (FFLP) problem with fuzzy equality constraints is discussed. Using deviation degree measures, the FFLP problem is transformed into a crisp 6-parametric linear programming (LP) ...A new fully fuzzy linear programming (FFLP) problem with fuzzy equality constraints is discussed. Using deviation degree measures, the FFLP problem is transformed into a crisp 6-parametric linear programming (LP) problem. Giving the value of deviation degree in each constraint, the 6-fuzzy optimal solution of the FFLP problem can be obtained by solving this LP problem. An algorithm is also proposed to find a balance-fuzzy optimal solution between two goals in conflict: to improve the values of the objective function and to decrease the values of the deviation degrees. A numerical example is solved to illustrate the proposed method.展开更多
In a composite-step approach, a step Sk is computed as the sum of two components Uk and hk. The normal component Vk, which is called the vertical step, aims to improve the linearized feasibility, while the tangential ...In a composite-step approach, a step Sk is computed as the sum of two components Uk and hk. The normal component Vk, which is called the vertical step, aims to improve the linearized feasibility, while the tangential component hk, which is also called horizontal step, concentrates on reducing a model of the merit functions. As a filter method, it reduces both the infeasibility and the objective function. This is the same property of these two methods. In this paper, one concerns the composite-step like filter approach. That is, a step is tangential component hk if the infeasibility is reduced. Or else, Sk is a composite step composed of normal component Uk, and tangential component hk.展开更多
A new method of moving asymptotes for large-scale minimization subject to linear equality constraints is discussed. In this method, linear equality constraints are deleted with null space technique and the descending ...A new method of moving asymptotes for large-scale minimization subject to linear equality constraints is discussed. In this method, linear equality constraints are deleted with null space technique and the descending direction is obtained by solving a convex separable subproblem of moving asymptotes in each iteration. New rules for controlling the asymptotes parameters are designed and the global convergence of the method under some reasonable conditions is established and proved. The numerical results show that the new method may be capable of processing some large scale problems.展开更多
This paper investigates the equality-constrained minimization of polynomial functions. Let R be the field of real numbers, and R[x1,..., xn] the ring of polynomials over R in variables x1,..., xn. For an f ∈ R[x1,......This paper investigates the equality-constrained minimization of polynomial functions. Let R be the field of real numbers, and R[x1,..., xn] the ring of polynomials over R in variables x1,..., xn. For an f ∈ R[x1,..., xn] and a finite subset H of R[x1,..., xn], denote by V(f : H) the set {f( ˉα) | ˉα∈ Rn, and h( ˉα) =0, ? h ∈ H}. We provide an effective algorithm for computing a finite set U of non-zero univariate polynomials such that the infimum inf V(f : H) of V(f : H) is a root of some polynomial in U whenever inf V(f : H) = ±∞.The strategies of this paper are decomposing a finite set of polynomials into triangular chains of polynomials and computing the so-called revised resultants. With the aid of the computer algebraic system Maple, our algorithm has been made into a general program to treat the equality-constrained minimization of polynomials with rational coefficients.展开更多
In this paper, we introduce a concept of substationary points and present a new trust region-based method for the optimization problems with general nonlinear equality constraints and simple bounds. Without the linear...In this paper, we introduce a concept of substationary points and present a new trust region-based method for the optimization problems with general nonlinear equality constraints and simple bounds. Without the linear independent assumption on the gradients of the equalitiy constraints, we prove the global convergence results for the main algorithm and indicate that they extend the results on SQP and those on trust region methods for equality constrained optimizstion and for optimization with simple bounds. Moreover, since any nonlinear programming problem can be converted into the standard nonlinear programming by introducing slack variables, the trust region method preseated in this paper can be used for solving general nonlinear programming problems.展开更多
A semi-infinite programming problem is a mathematical programming problem with a finite number of variables and infinitely many constraints. Duality theories and generalized convexity concepts are important research t...A semi-infinite programming problem is a mathematical programming problem with a finite number of variables and infinitely many constraints. Duality theories and generalized convexity concepts are important research topics in mathematical programming. In this paper, we discuss a fairly large number of paramet- ric duality results under various generalized (η,ρ)-invexity assumptions for a semi-infinite minmax fractional programming problem.展开更多
In this paper, we discuss a large number of sets of global parametric sufficient optimality conditions under various generalized (η,ρ)-invexity assumptions for a semi-infinite minmax fractional programming problem.
In this article, we discuss a numerical method for the computation of the minimal and maximal solutions of a steady scalar Eikonal equation. This method relies on a penalty treatment of the nonlinearity, a biharmonic ...In this article, we discuss a numerical method for the computation of the minimal and maximal solutions of a steady scalar Eikonal equation. This method relies on a penalty treatment of the nonlinearity, a biharmonic regularization of the resulting variational problem, and the time discretization by operator-splitting of an initial value problem associated with the Euler-Lagrange equations of the regularized variational problem. A low-order finite element discretization is advocated since it is well-suited to the low regularity of the solutions. Numerical experiments show that the method sketched above can capture efficiently the extremal solutions of various two-dimensional test problems and that it has also the ability of handling easily domains with curved boundaries.展开更多
In this paper, we present several parametric duality results under various generalized (a,v,p)-V- invexity assumptions for a semiinfinite multiobjective fractional programming problem.
Abstract In this paper, we discuss numerous sets of global parametric sufficient efficiency conditions under various generalized (a,n, p)-V-invexity assumptions for a semiinfinite multiobjective fractional programmi...Abstract In this paper, we discuss numerous sets of global parametric sufficient efficiency conditions under various generalized (a,n, p)-V-invexity assumptions for a semiinfinite multiobjective fractional programming problem.展开更多
基金supported by the National Natural Science Foundation of China,Grant Nos.42174011,41874001 and 41664001Innovation Found Designated for Graduate Students of ECUT,Grant No.DHYC-202020。
文摘The reasonable prior information between the parameters in the adjustment processing can significantly improve the precision of the parameter solution. Based on the principle of equality constraints, we establish the mixed additive and multiplicative random error model with equality constraints and derive the weighted least squares iterative solution of the model. In addition, aiming at the ill-posed problem of the coefficient matrix, we also propose the ridge estimation iterative solution of ill-posed mixed additive and multiplicative random error model with equality constraints based on the principle of ridge estimation method and derive the U-curve method to determine the ridge parameter. The experimental results show that the weighted least squares iterative solution can obtain more reasonable parameter estimation and precision information than existing solutions, verifying the feasibility of applying the equality constraints to the mixed additive and multiplicative random error model. Furthermore, the ridge estimation iterative solution can obtain more accurate parameter estimation and precision information than the weighted least squares iterative solution.
文摘A trust-region algorithm is presented for a nonlinear optimization problem of equality-constraints. The characterization of the algorithm is using inexact gradient information. Global convergence results are demonstrated where the gradient values are obeyed a simple relative error condition.
基金supported by the National Natural Science Foundation of China(41074017)
文摘The Gauss-Markov (GM) model and the Errors-in-Variables (EIV) model are frequently used to perform 3D coordinate transformations in geodesy and engineering surveys. In these applications, because the observation errors in original coordinates system are also taken into account, the latter is more accurate and reasonable than the former. Although the Weighted Total Least Squares (WTLS) technique has been intro- duced into coordinate transformations as the measured points are heteroscedastic and correlated, the Variance- Covariance Matrix (VCM) of observations is restricted by a particular structure, namely, only the correlations of each points are taken into account. Because the 3D datum transformation with large rotation angle is a non- linear problem, the WTLS is no longer suitable in this ease. In this contribution, we suggested the nonlinear WTLS adjustments with equality constraints (NWTLS-EC) for 3D datum transformation with large rotation an- gle, which removed the particular structure restriction on the VCM. The Least Squares adjustment with Equality (LSE) constraints is employed to solve NWTLS-EC as the nonlinear model has been linearized, and an iterative algorithm is proposed with the LSE solution. A simulation study of 3D datum transformation with large rotation angle is given to insight into the feasibility of our algorithm at last.
基金supported by the National Natural Science Foundation of China(71202140)the Fundamental Research for the Central Universities(HUST:2013QN099)
文摘A new fully fuzzy linear programming (FFLP) problem with fuzzy equality constraints is discussed. Using deviation degree measures, the FFLP problem is transformed into a crisp 6-parametric linear programming (LP) problem. Giving the value of deviation degree in each constraint, the 6-fuzzy optimal solution of the FFLP problem can be obtained by solving this LP problem. An algorithm is also proposed to find a balance-fuzzy optimal solution between two goals in conflict: to improve the values of the objective function and to decrease the values of the deviation degrees. A numerical example is solved to illustrate the proposed method.
基金Supported partially by Chinese NNSF grants 19731010the knowledge innovation program of CAS.
文摘In a composite-step approach, a step Sk is computed as the sum of two components Uk and hk. The normal component Vk, which is called the vertical step, aims to improve the linearized feasibility, while the tangential component hk, which is also called horizontal step, concentrates on reducing a model of the merit functions. As a filter method, it reduces both the infeasibility and the objective function. This is the same property of these two methods. In this paper, one concerns the composite-step like filter approach. That is, a step is tangential component hk if the infeasibility is reduced. Or else, Sk is a composite step composed of normal component Uk, and tangential component hk.
基金Supported by the National Natural Sicence Foundation of China(No.11071117)the Natural Science Foundation of Jiangsu Province(No.BK2006184)the Fundamental Research Funds for the Central Universities(No. 2010LKSX01)
文摘A new method of moving asymptotes for large-scale minimization subject to linear equality constraints is discussed. In this method, linear equality constraints are deleted with null space technique and the descending direction is obtained by solving a convex separable subproblem of moving asymptotes in each iteration. New rules for controlling the asymptotes parameters are designed and the global convergence of the method under some reasonable conditions is established and proved. The numerical results show that the new method may be capable of processing some large scale problems.
基金supported by National Natural Science Foundation of China(Grant No.11161034)
文摘This paper investigates the equality-constrained minimization of polynomial functions. Let R be the field of real numbers, and R[x1,..., xn] the ring of polynomials over R in variables x1,..., xn. For an f ∈ R[x1,..., xn] and a finite subset H of R[x1,..., xn], denote by V(f : H) the set {f( ˉα) | ˉα∈ Rn, and h( ˉα) =0, ? h ∈ H}. We provide an effective algorithm for computing a finite set U of non-zero univariate polynomials such that the infimum inf V(f : H) of V(f : H) is a root of some polynomial in U whenever inf V(f : H) = ±∞.The strategies of this paper are decomposing a finite set of polynomials into triangular chains of polynomials and computing the so-called revised resultants. With the aid of the computer algebraic system Maple, our algorithm has been made into a general program to treat the equality-constrained minimization of polynomials with rational coefficients.
文摘In this paper, we introduce a concept of substationary points and present a new trust region-based method for the optimization problems with general nonlinear equality constraints and simple bounds. Without the linear independent assumption on the gradients of the equalitiy constraints, we prove the global convergence results for the main algorithm and indicate that they extend the results on SQP and those on trust region methods for equality constrained optimizstion and for optimization with simple bounds. Moreover, since any nonlinear programming problem can be converted into the standard nonlinear programming by introducing slack variables, the trust region method preseated in this paper can be used for solving general nonlinear programming problems.
文摘A semi-infinite programming problem is a mathematical programming problem with a finite number of variables and infinitely many constraints. Duality theories and generalized convexity concepts are important research topics in mathematical programming. In this paper, we discuss a fairly large number of paramet- ric duality results under various generalized (η,ρ)-invexity assumptions for a semi-infinite minmax fractional programming problem.
文摘In this paper, we discuss a large number of sets of global parametric sufficient optimality conditions under various generalized (η,ρ)-invexity assumptions for a semi-infinite minmax fractional programming problem.
基金supported by the National Science Foundation(No.DMS-0913982)
文摘In this article, we discuss a numerical method for the computation of the minimal and maximal solutions of a steady scalar Eikonal equation. This method relies on a penalty treatment of the nonlinearity, a biharmonic regularization of the resulting variational problem, and the time discretization by operator-splitting of an initial value problem associated with the Euler-Lagrange equations of the regularized variational problem. A low-order finite element discretization is advocated since it is well-suited to the low regularity of the solutions. Numerical experiments show that the method sketched above can capture efficiently the extremal solutions of various two-dimensional test problems and that it has also the ability of handling easily domains with curved boundaries.
文摘In this paper, we present several parametric duality results under various generalized (a,v,p)-V- invexity assumptions for a semiinfinite multiobjective fractional programming problem.
文摘Abstract In this paper, we discuss numerous sets of global parametric sufficient efficiency conditions under various generalized (a,n, p)-V-invexity assumptions for a semiinfinite multiobjective fractional programming problem.