In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al...In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers.展开更多
An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same t...An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.展开更多
The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space ...The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).展开更多
The design of a total energy conserving semi-implicit scheme for the multiple-level baroclinic primitive equation has remained an unsolved problem for a long time. In this work, however, we follow an energy perfect co...The design of a total energy conserving semi-implicit scheme for the multiple-level baroclinic primitive equation has remained an unsolved problem for a long time. In this work, however, we follow an energy perfect conserving semi-implicit scheme of a European Centre for Medium-Range Weather Forecasts (ECMWF) type sigma-coordinate primitive equation which has recently successfully formulated. Some real-data contrast tests between the model of the new conserving scheme and that of the ECMWF-type of global spectral semi-implicit scheme show that the RMS error of the averaged forecast Height at 850 hPa can be clearly improved after the first integral week. The reduction also reaches 50 percent by the 30th day. Further contrast tests demonstrate that the RMS error of the monthly mean height in the middle and lower troposphere also be largely reduced, and some well-known systematical defects can be greatly improved. More detailed analysis reveals that part of the positive contributions comes from improvements of the extra-long wave components. This indicates that a remarkable improvement of the model climate drift level can be achieved by the actual realizing of a conserving time-difference scheme, which thereby eliminates a corresponding computational systematic error source/sink found in the currently-used traditional type of weather and climate system models in relation to the baroclinic primitive equations.展开更多
In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existenc...In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.展开更多
The rotation of the physical Earth is far more complex than the rotation of a biaxial or slightly triaxial rigid body can represent. The linearization of the Liouville equation via the Munk and MacDonal perturbation s...The rotation of the physical Earth is far more complex than the rotation of a biaxial or slightly triaxial rigid body can represent. The linearization of the Liouville equation via the Munk and MacDonal perturbation scheme has oversimplified polar excitation physics. A more conventional linearization of the Liouville equation as the generalized equation of motion for free rotation of the physical Earth reveals: 1) The reference frame is most essential, which needs to be unique and physically located in the Earth;2) Physical angular momentum perturbation arises from motion and mass redistribution to appear as relative angular momentum in a rotating Earth, which excites polar motion and length of day variations;3) At polar excitation, the direction of the rotation axis in space does not change besides nutation and precession around the invariant angular momentum axis, while the principal axes shift responding only to mass redistribution;4) Two inertia changes appear simultaneously at polar excitation;one is due to mass redistribution, and the other arises from the axial near-symmetry of the perturbed Earth;5) The Earth at polar excitation becomes slightly triaxial and axially near-symmetrical even it was originally biaxial;6) At polar excitation, the rotation of a non-rigid Earth becomes unstable;7) The instantaneous figure axis or mean excitation axis around which the rotation axis physically wobbles is not a principal axis;8) In addition to amplitude excitation, the Chandler wobble possesses also multiple frequency-splits and is slow damping;9) Secular polar drift is after the products of inertia and always associated with the Chandler wobble;both belong to polar motion;10) The Earth will reach its stable rotation only after its rotation axis, major principal axis, and instantaneous figure axis or mean excitation axis are all completely aligned with each other to arrive at the minimum energy configuration of the system;11) The observation of the multiple splits of the Chandler frequency is further examined by means of exact-bandwidth filtering and spectral analysis, which confirms the theoretical prediction of the linearized Liouville equation. After the removal of the Gibbs phenomenon from the polar motion spectra, Markowitz wobbles are also observed;12) Error analysis of the ILS data demonstrates that the incoherent noises from the Wars in 1920-1945 are separable from polar motion and removable, so the ILS data are still reliable and useful for the study of the continuation of polar motion.展开更多
An error matrix equation based on error matrix theory was presented in previous research of the error-eliminating theory. The purpose of solving the error matrix equation is to create a decision support on how to swit...An error matrix equation based on error matrix theory was presented in previous research of the error-eliminating theory. The purpose of solving the error matrix equation is to create a decision support on how to switch from bad to good status. A matrix based on error logic is used to express current status u, expectant status u1 and transformation matrix T. It is u, u1, and T that are used to build error matrix equation T (u)= u1. This allows us to find a method whereby bad status “u” changes to good status “u1” by solving the equation. The conversion method that transform from current to expectant status can be obtained from the transformation matrix T. On this basis, this paper proposes a new kind of error matrix equation named “containing-type error matrix equation”. This equation is more suitable for analyzing the realistic question. The method of solving, existence and form of solution for this type of equation have been presented in this paper. This research provides a potential useful new technique for decision analysis.展开更多
H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and unique...H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.展开更多
Error estimates of Galerkin method for Kuramoto-Sivashingsky (K-S) equation in space dimension ≥3 are derived in the paper. These results furnish strong evidence for the computation of the solutions.
In this paper we introduce two kinds of parallel Schwarz domain decomposition me thods for general, selfadjoint, second order parabolic equations and study the dependence of their convergence rates on parameters of ti...In this paper we introduce two kinds of parallel Schwarz domain decomposition me thods for general, selfadjoint, second order parabolic equations and study the dependence of their convergence rates on parameters of time-step and space-mesh. We prove that the, approximate solution has convergence independent of iteration times at each time-level. And the L^2 error estimates are given.展开更多
A nonlinear Galerkin mixed element (NGME) method and a posteriori error exstimator based on the method are established for the stationary Navier-Stokes equations. The existence and error estimates of the NGME solution...A nonlinear Galerkin mixed element (NGME) method and a posteriori error exstimator based on the method are established for the stationary Navier-Stokes equations. The existence and error estimates of the NGME solution are first discussed, and then a posteriori error estimator based on the NGME method is derived.展开更多
The inverse heat conduction problem (IHCP) is a severely ill-posed problem in the sense that the solution ( if it exists) does not depend continuously on the data. But now the results on inverse heat conduction pr...The inverse heat conduction problem (IHCP) is a severely ill-posed problem in the sense that the solution ( if it exists) does not depend continuously on the data. But now the results on inverse heat conduction problem are mainly devoted to the standard inverse heat conduction problem. Some optimal error bounds in a Sobolev space of regularized approximation solutions for a sideways parabolic equation, i. e. , a non-standard inverse heat conduction problem with convection term which appears in some applied subject are given.展开更多
In this paper, a spectral method to analyze the generalized Benjamin Bona Mahony equations is used. The existence and uniqueness of global smooth solution of these equations are proved. The large time error estimati...In this paper, a spectral method to analyze the generalized Benjamin Bona Mahony equations is used. The existence and uniqueness of global smooth solution of these equations are proved. The large time error estimation between the spectral approximate solution and the exact solution is obtained.展开更多
In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equatio...In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equation method. The numerical approximate schemes for both problems on a bounded or unbounded domain in R3 are proposed and their prior error estimates are obtained.展开更多
A posteriori error estimate of the discontinuous-streamline diffusion method for first-order hyperbolic equations was presented, which can be used to adjust space mesh reasonably. A numerical example is given to illus...A posteriori error estimate of the discontinuous-streamline diffusion method for first-order hyperbolic equations was presented, which can be used to adjust space mesh reasonably. A numerical example is given to illustrate the accuracy and feasibility of this method.展开更多
Residual based on a posteriori error estimates for conforming finite element solutions of incompressible Navier-Stokes equations with stream function form which were computed with seven recently proposed two-level met...Residual based on a posteriori error estimates for conforming finite element solutions of incompressible Navier-Stokes equations with stream function form which were computed with seven recently proposed two-level method were derived. The posteriori error estimates contained additional terms in comparison to the error estimates for the solution obtained by the standard finite element method. The importance of these additional terms in the error estimates was investigated by studying their asymptotic behavior. For optimal scaled meshes, these bounds are not of higher order than of convergence of discrete solution.展开更多
A Fourier spectral method for the generalized Korteweg-de Vries equation with periodic boundary conditions is analyzed, and a corresponding optimal error estimate in L^2-norm is obtained. It improves the result presen...A Fourier spectral method for the generalized Korteweg-de Vries equation with periodic boundary conditions is analyzed, and a corresponding optimal error estimate in L^2-norm is obtained. It improves the result presented by Maday and Quarteroni. A modified Fourier pseudospectral method is also presented, with the same convergence properties as the Fourier spectral method.展开更多
In this paper, an isogeometric error estimate for transport equation is obtained in 2D to prove the convergence of isogeometric method. The result that we have obtained, generalizes Ern result, got in finite elements ...In this paper, an isogeometric error estimate for transport equation is obtained in 2D to prove the convergence of isogeometric method. The result that we have obtained, generalizes Ern result, got in finite elements method. For the time discretization, the two stage Heun scheme is used to prove this result. For a polynomial of degree k≥1, the order of convergence in space is 2 and in time is .展开更多
The proper orthogonal decomposition (POD) is a model reduction technique for the simulation Of physical processes governed by partial differential equations (e.g., fluid flows). It has been successfully used in th...The proper orthogonal decomposition (POD) is a model reduction technique for the simulation Of physical processes governed by partial differential equations (e.g., fluid flows). It has been successfully used in the reduced-order modeling of complex systems. In this paper, the applications of the POD method are extended, i.e., the POD method is applied to a classical finite difference (FD) scheme for the non-stationary Stokes equation with a real practical applied background. A reduced FD scheme is established with lower dimensions and sufficiently high accuracy, and the error estimates are provided between the reduced and the classical FD solutions. Some numerical examples illustrate that the numerical results are consistent with theoretical conclusions. Moreover, it is shown that the reduced FD scheme based on the POD method is feasible and efficient in solving the FD scheme for the non-stationary Stokes equation.展开更多
基金supported by the National Science Foundation grant DMS-1818998.
文摘In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers.
基金Supported by the National Natural Science Foundation of China (10601022)Natural Science Foundation of Inner Mongolia Autonomous Region (200607010106)Youth Science Foundation of Inner Mongolia University(ND0702)
文摘An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.
文摘The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).
基金This research was jointly supported by the National Key Programme for Developing Basic Sciences (G1998040911) and the National Natural Science Foundation of China under Grant Nos. 49675267, 49205058, and 49975020.
文摘The design of a total energy conserving semi-implicit scheme for the multiple-level baroclinic primitive equation has remained an unsolved problem for a long time. In this work, however, we follow an energy perfect conserving semi-implicit scheme of a European Centre for Medium-Range Weather Forecasts (ECMWF) type sigma-coordinate primitive equation which has recently successfully formulated. Some real-data contrast tests between the model of the new conserving scheme and that of the ECMWF-type of global spectral semi-implicit scheme show that the RMS error of the averaged forecast Height at 850 hPa can be clearly improved after the first integral week. The reduction also reaches 50 percent by the 30th day. Further contrast tests demonstrate that the RMS error of the monthly mean height in the middle and lower troposphere also be largely reduced, and some well-known systematical defects can be greatly improved. More detailed analysis reveals that part of the positive contributions comes from improvements of the extra-long wave components. This indicates that a remarkable improvement of the model climate drift level can be achieved by the actual realizing of a conserving time-difference scheme, which thereby eliminates a corresponding computational systematic error source/sink found in the currently-used traditional type of weather and climate system models in relation to the baroclinic primitive equations.
基金supported by the National Basic Research Program under the Grant 2005CB321701the National Natural Science Foundation of China under the Grants 60474027 and 10771211.
文摘In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.
文摘The rotation of the physical Earth is far more complex than the rotation of a biaxial or slightly triaxial rigid body can represent. The linearization of the Liouville equation via the Munk and MacDonal perturbation scheme has oversimplified polar excitation physics. A more conventional linearization of the Liouville equation as the generalized equation of motion for free rotation of the physical Earth reveals: 1) The reference frame is most essential, which needs to be unique and physically located in the Earth;2) Physical angular momentum perturbation arises from motion and mass redistribution to appear as relative angular momentum in a rotating Earth, which excites polar motion and length of day variations;3) At polar excitation, the direction of the rotation axis in space does not change besides nutation and precession around the invariant angular momentum axis, while the principal axes shift responding only to mass redistribution;4) Two inertia changes appear simultaneously at polar excitation;one is due to mass redistribution, and the other arises from the axial near-symmetry of the perturbed Earth;5) The Earth at polar excitation becomes slightly triaxial and axially near-symmetrical even it was originally biaxial;6) At polar excitation, the rotation of a non-rigid Earth becomes unstable;7) The instantaneous figure axis or mean excitation axis around which the rotation axis physically wobbles is not a principal axis;8) In addition to amplitude excitation, the Chandler wobble possesses also multiple frequency-splits and is slow damping;9) Secular polar drift is after the products of inertia and always associated with the Chandler wobble;both belong to polar motion;10) The Earth will reach its stable rotation only after its rotation axis, major principal axis, and instantaneous figure axis or mean excitation axis are all completely aligned with each other to arrive at the minimum energy configuration of the system;11) The observation of the multiple splits of the Chandler frequency is further examined by means of exact-bandwidth filtering and spectral analysis, which confirms the theoretical prediction of the linearized Liouville equation. After the removal of the Gibbs phenomenon from the polar motion spectra, Markowitz wobbles are also observed;12) Error analysis of the ILS data demonstrates that the incoherent noises from the Wars in 1920-1945 are separable from polar motion and removable, so the ILS data are still reliable and useful for the study of the continuation of polar motion.
文摘An error matrix equation based on error matrix theory was presented in previous research of the error-eliminating theory. The purpose of solving the error matrix equation is to create a decision support on how to switch from bad to good status. A matrix based on error logic is used to express current status u, expectant status u1 and transformation matrix T. It is u, u1, and T that are used to build error matrix equation T (u)= u1. This allows us to find a method whereby bad status “u” changes to good status “u1” by solving the equation. The conversion method that transform from current to expectant status can be obtained from the transformation matrix T. On this basis, this paper proposes a new kind of error matrix equation named “containing-type error matrix equation”. This equation is more suitable for analyzing the realistic question. The method of solving, existence and form of solution for this type of equation have been presented in this paper. This research provides a potential useful new technique for decision analysis.
基金Supported by NNSF(10601022,11061021)Supported by NSF of Inner Mongolia Au-tonomous Region(200607010106)Supported by SRP of Higher Schools of Inner Mongolia(NJ10006)
文摘H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.
文摘Error estimates of Galerkin method for Kuramoto-Sivashingsky (K-S) equation in space dimension ≥3 are derived in the paper. These results furnish strong evidence for the computation of the solutions.
基金This work was supported by Natural Science Foundation of China and Shandong Province.
文摘In this paper we introduce two kinds of parallel Schwarz domain decomposition me thods for general, selfadjoint, second order parabolic equations and study the dependence of their convergence rates on parameters of time-step and space-mesh. We prove that the, approximate solution has convergence independent of iteration times at each time-level. And the L^2 error estimates are given.
文摘A nonlinear Galerkin mixed element (NGME) method and a posteriori error exstimator based on the method are established for the stationary Navier-Stokes equations. The existence and error estimates of the NGME solution are first discussed, and then a posteriori error estimator based on the NGME method is derived.
文摘The inverse heat conduction problem (IHCP) is a severely ill-posed problem in the sense that the solution ( if it exists) does not depend continuously on the data. But now the results on inverse heat conduction problem are mainly devoted to the standard inverse heat conduction problem. Some optimal error bounds in a Sobolev space of regularized approximation solutions for a sideways parabolic equation, i. e. , a non-standard inverse heat conduction problem with convection term which appears in some applied subject are given.
文摘In this paper, a spectral method to analyze the generalized Benjamin Bona Mahony equations is used. The existence and uniqueness of global smooth solution of these equations are proved. The large time error estimation between the spectral approximate solution and the exact solution is obtained.
基金This research was supported by the National Natural Science Foundation of China
文摘In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equation method. The numerical approximate schemes for both problems on a bounded or unbounded domain in R3 are proposed and their prior error estimates are obtained.
文摘A posteriori error estimate of the discontinuous-streamline diffusion method for first-order hyperbolic equations was presented, which can be used to adjust space mesh reasonably. A numerical example is given to illustrate the accuracy and feasibility of this method.
文摘Residual based on a posteriori error estimates for conforming finite element solutions of incompressible Navier-Stokes equations with stream function form which were computed with seven recently proposed two-level method were derived. The posteriori error estimates contained additional terms in comparison to the error estimates for the solution obtained by the standard finite element method. The importance of these additional terms in the error estimates was investigated by studying their asymptotic behavior. For optimal scaled meshes, these bounds are not of higher order than of convergence of discrete solution.
基金Project supported by the National Natural Science Foundation of China (No. 60874039)Shanghai Leading Academic Discipline Project (No. J50101)
文摘A Fourier spectral method for the generalized Korteweg-de Vries equation with periodic boundary conditions is analyzed, and a corresponding optimal error estimate in L^2-norm is obtained. It improves the result presented by Maday and Quarteroni. A modified Fourier pseudospectral method is also presented, with the same convergence properties as the Fourier spectral method.
文摘In this paper, an isogeometric error estimate for transport equation is obtained in 2D to prove the convergence of isogeometric method. The result that we have obtained, generalizes Ern result, got in finite elements method. For the time discretization, the two stage Heun scheme is used to prove this result. For a polynomial of degree k≥1, the order of convergence in space is 2 and in time is .
基金Project supported by the National Natural Science Foundation of China (Nos. 10871022, 11061009, and 40821092)the National Basic Research Program of China (973 Program) (Nos. 2010CB428403, 2009CB421407, and 2010CB951001)the Natural Science Foundation of Hebei Province of China (No. A2010001663)
文摘The proper orthogonal decomposition (POD) is a model reduction technique for the simulation Of physical processes governed by partial differential equations (e.g., fluid flows). It has been successfully used in the reduced-order modeling of complex systems. In this paper, the applications of the POD method are extended, i.e., the POD method is applied to a classical finite difference (FD) scheme for the non-stationary Stokes equation with a real practical applied background. A reduced FD scheme is established with lower dimensions and sufficiently high accuracy, and the error estimates are provided between the reduced and the classical FD solutions. Some numerical examples illustrate that the numerical results are consistent with theoretical conclusions. Moreover, it is shown that the reduced FD scheme based on the POD method is feasible and efficient in solving the FD scheme for the non-stationary Stokes equation.