期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Modulation space estimates for damped fractional wave equation 被引量:1
1
作者 ZHANG ChunJie ZHANG YuHuai REN FangFang 《Science China Mathematics》 SCIE CSCD 2016年第4期687-696,共10页
Instead of the L^p estimates,we study the modulation space estimates for the solution to the damped wave equation.Decay properties for both the linear and semilinear equations are obtained.The estimates in modulation ... Instead of the L^p estimates,we study the modulation space estimates for the solution to the damped wave equation.Decay properties for both the linear and semilinear equations are obtained.The estimates in modulation space differ in many aspects from those in L^p space. 展开更多
关键词 damped wave equation modulation space decay property
原文传递
任意均分间隔的预失真结构
2
作者 刘庆杰 陈金树 盛涌 《电讯技术》 北大核心 2015年第6期665-670,共6页
基带预失真技术是解决调制器输出信号出现的幅度失真和群时延失真的有效方法。对于全数字高速调制器的升采样、软件无线电和中频数模转换器(DAC)等特点,传统的码元间隔滤波和分数间隔滤波结构难以取得很好的效果。针对这一问题,提出了... 基带预失真技术是解决调制器输出信号出现的幅度失真和群时延失真的有效方法。对于全数字高速调制器的升采样、软件无线电和中频数模转换器(DAC)等特点,传统的码元间隔滤波和分数间隔滤波结构难以取得很好的效果。针对这一问题,提出了一种新的任意均分间隔的滤波结构,跳过重采样,直接对升采样后的数据做自适应滤波,可以获得更好的预失真效果。Matlab仿真得到的任意均分间隔滤波结构效果好于码元间隔滤波结构,且实测结果表明该结构可以显著减少高速调制器输出信号的失真。 展开更多
关键词 全数字调制器 基带预失真 自适应滤波 任意均分间隔
下载PDF
Approximate Solution of the Kuramoto-Shivashinsky Equation on an Unbounded Domain
3
作者 Wael W.MOHAMMED 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2018年第1期145-162,共18页
The main goal of this paper is to approximate the Kuramoto-Shivashinsky(K-S for short) equation on an unbounded domain near a change of bifurcation,where a band of dominant pattern is changing stability.This leads to ... The main goal of this paper is to approximate the Kuramoto-Shivashinsky(K-S for short) equation on an unbounded domain near a change of bifurcation,where a band of dominant pattern is changing stability.This leads to a slow modulation of the dominant pattern.Here we consider PDEs with quadratic nonlinearities and derive rigorously the modulation equation,which is called the Ginzburg-Landau(G-L for short) equation,for the amplitudes of the dominating modes. 展开更多
关键词 Multi-scale analysis modulation equation Kuramoto-Shivashinsky equation Ginzburg-Landau equation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部