In general relativity, the equation of motion of the spin is given by the equation of parallel transport, which is a result of the space-time geometry. Any result of the space-time geometry cannog be directly applied ...In general relativity, the equation of motion of the spin is given by the equation of parallel transport, which is a result of the space-time geometry. Any result of the space-time geometry cannog be directly applied to gauge theory of gravity. In gauge theory of gravity, based on the viewpoint of the coupling between the spin and gravitational field, an equation of motlon of the spin is deduced. In the post Newtonian approximation, it is proved that this equation gives the same result as that of the equation of parallel transport. So, in the post Newtonian approximation, gauge theory of gravity gives out the same prediction on the precession of orbiting gyroscope as that of general relativity.展开更多
Based on the coupfing between the spin of a particle and gravitoelectromagnetic field, the equation of motion of a spinning test particle in gravitational field is deduced. From this equation of motion, it is found th...Based on the coupfing between the spin of a particle and gravitoelectromagnetic field, the equation of motion of a spinning test particle in gravitational field is deduced. From this equation of motion, it is found that the motion of a spinning particle deviates from the geodesic trajectory, and this deviation originates from the coupling between the spin of the particle and gravitoelectromagnetic field, which is also the origin of Lense-Thirring effects. In post-Newtonian approximations, this equation gives the same results as those of Mathisson-Papapetrou equation. Effect of the deviation of geodesic trajectory is detectable.展开更多
In this paper an equation of motion is presented for a general thick viscoelastic plate, including the effects of shear deformation, extrusion deformation and rotatory inertia. This equation is the generalization of e...In this paper an equation of motion is presented for a general thick viscoelastic plate, including the effects of shear deformation, extrusion deformation and rotatory inertia. This equation is the generalization of equations of motion for the corresponding thick elastic plate, and it can be degenerated into several types of equations for various special cases.展开更多
A new derivation of the vectorial equation of motion for a test particle in the Schwarzchild field is given which greatly simplifies the procedure given by C. A. Murray[1]
In the standard Einstein-Cartan theory,matter fields couple to gravity through the Minimal Coupling Procedure(MCP),and yet leave the theory an ambiguity.Applying MCP to the action or to the equation of motion would le...In the standard Einstein-Cartan theory,matter fields couple to gravity through the Minimal Coupling Procedure(MCP),and yet leave the theory an ambiguity.Applying MCP to the action or to the equation of motion would lead to different gravitational couplings.We propose a new covariant derivative to remove the ambiguity and discuss the relation between our proposal and previous treatments on this subject.展开更多
In this paper, the equations of motion for nonholonomic mechanical system with unilateral holonomic constraints and unilateral nonholonomic constraints are presented, and an example to illustrate the application of th...In this paper, the equations of motion for nonholonomic mechanical system with unilateral holonomic constraints and unilateral nonholonomic constraints are presented, and an example to illustrate the application of the result is given.展开更多
We applied the method of Thermomechanical Dynamics (TMD) to a low-temperature Stirling engine, and the dissipative equation of motion and time-evolving physical quantities are self-consistently calculated for the firs...We applied the method of Thermomechanical Dynamics (TMD) to a low-temperature Stirling engine, and the dissipative equation of motion and time-evolving physical quantities are self-consistently calculated for the first time in this field. The thermomechanical states of the heat engine are in Nonequilibrium Irreversible States (NISs), and time-dependent thermodynamic work W(t), internal energy E(t), energy dissipation or entropy Q<sub>d</sub>(t), and temperature T(t), are precisely studied and computed in TMD. We also introduced the new formalism, Q(t)-picture of thermodynamic heat-energy flows, for consistent analyses of NISs. Thermal flows in a long-time uniform heat flow and in a short-time heat flow are numerically studied as examples. In addition to the analysis of time-dependent physical quantities, the TMD analysis suggests that the concept of force and acceleration in Newtonian mechanics should be modified. The acceleration is defined as a continuously differentiable function of Class C<sup>2</sup> in Newtonian mechanics, but the thermomechanical dynamics demands piecewise continuity for acceleration and thermal force, required from physical reasons caused by frictional variations and thermal fluctuations. The acceleration has no direct physical meaning associated with force in TMD. The physical implications are fundamental for the concept of the macroscopic phenomena in NISs composed of systems in thermal and mechanical motion.展开更多
This paper presents a field method for integrating the equations of motion of nonholonomic controllable systems. An example is given to illustrate the application of the method.
In a previous work[J.Chem.Phys.140,174105(2014)],we have shown that a mixed quantum classical(MQC)rate theory can be derived to investigate the quantum tunneling effects in the proton transfer reactions.However,the me...In a previous work[J.Chem.Phys.140,174105(2014)],we have shown that a mixed quantum classical(MQC)rate theory can be derived to investigate the quantum tunneling effects in the proton transfer reactions.However,the method is based on the high temperature approximation of the hierarchical equation of motion(HEOM)with the Debye-Drude spectral density,and results in a multistate Zusman type of equation.We now extend this theory to include quantum effects of the bath degrees of freedom.By writing the full HEOM into a multidimensional partial differential equation in phase space,we can define a new reaction coordinate,and the previous method can be generalized to the full quantum regime.The validity of the new method is demonstrated by using numerical examples,including the spin-Boson model,and the double well model for proton transfer reaction.The new method is found to resolve some key problems of the previous theory based on high temperature approximation,including possible numerical instability in long time simulation and wrong rate constant at low temperatures.展开更多
To advance hierarchical equations of motion as a standard theory for quantum dissipative dynamics, we put forward a mixed Heisenberg-SchrSdinger scheme with block-matrix implementation on efficient evaluation of nonli...To advance hierarchical equations of motion as a standard theory for quantum dissipative dynamics, we put forward a mixed Heisenberg-SchrSdinger scheme with block-matrix implementation on efficient evaluation of nonlinear optical response function. The new approach is also integrated with optimized hierarchical theory and numerical filtering algorithm. Different configurations of coherent two-dimensional spectroscopy of model excitonic dimer systems are investigated, with focusing on the effects of intermolecular transfer coupling and bi-exciton interaction.展开更多
The forward flight of a model butterfly was stud- ied by simulation using the equations of motion coupled with the Navier-Stokes equations. The model butterfly moved under the action of aerodynamic and gravitational f...The forward flight of a model butterfly was stud- ied by simulation using the equations of motion coupled with the Navier-Stokes equations. The model butterfly moved under the action of aerodynamic and gravitational forces, where the aerodynamic forces were generated by flapping wings which moved with the body, allowing the body os- cillations of the model butterfly to be simulated. The main results are as follows: (1) The aerodynamic force produced by the wings is approximately perpendicular to the long-axis of body and is much larger in the downstroke than in the up- stroke. In the downstroke the body pitch angle is small and the large aerodynamic force points up and slightly backward, giving the weight-supporting vertical force and a small neg- ative horizontal force, whilst in the upstroke, the body an- gle is large and the relatively small aerodynamic force points forward and slightly downward, giving a positive horizon- tal force which overcomes the body drag and the negative horizontal force generated in the downstroke. (2) Pitching oscillation of the butterfly body plays an equivalent role of the wing-rotation of many other insects. (3) The body-mass- specific power of the model butterfly is 33.3 W/kg, not very different from that of many other insects, e.g., fruitflies and dragonflies.展开更多
The relations between various couple stress tensors and their change rates are derived. The equations of angular momentum and the corresponding boundary conditions of incremental rate type are presented. Thus the equa...The relations between various couple stress tensors and their change rates are derived. The equations of angular momentum and the corresponding boundary conditions of incremental rate type are presented. Thus the equations of motion and the boundary conditions of incremental rate type of Cauchy form, Piola form and Kirchhoff from for polar continua are obtained in combination of these results with those for classical continuum mechanics derived by kuang Zhenbang.展开更多
In this paper we study the higher-order differential variational principle and differential equations of motion for mechanical systems in event space. Based on the higher-order d'Alembert principle of the system, the...In this paper we study the higher-order differential variational principle and differential equations of motion for mechanical systems in event space. Based on the higher-order d'Alembert principle of the system, the higher-order velocity energy and the higher-order acceleration energy of the system in event space are defined, the higher-order d'Alembert- Lagrange principle of the system in event space is established, and the parametric forms of Euler-Lagrange, Nielsen and Appell for this principle are given. Finally, the higher-order differential equations of motion for holonomic systems in event space are obtained.展开更多
This paper presents one type of integrals and its condition of existence for the equations of motion of higher-order nonholonomic systems, including l-order integral (generalized energy integral), 2-order integral and...This paper presents one type of integrals and its condition of existence for the equations of motion of higher-order nonholonomic systems, including l-order integral (generalized energy integral), 2-order integral and p-order integral (p>2)All of these integrals can be constructed by the Lagrangian function of the system. Two examples are given to illustrate the application of the suggested method.展开更多
The hierarchical equation of motion method has become one of the most popular numerical methods for describing the dissipative dynamics of open quantum systems linearly coupled to environment.However,its applications ...The hierarchical equation of motion method has become one of the most popular numerical methods for describing the dissipative dynamics of open quantum systems linearly coupled to environment.However,its applications to systems with strong electron correlation are largely restrained by the computational cost,which is mainly caused by the high truncation tier L required to accurately characterize the strong correlation effect.In this work,we develop an adiabatic terminator by decoupling the principal dissipation mode with the fastest dissipation rate from the slower ones.The adiabatic terminator leads to substantially enhanced convergence with respect to L as demonstrated by the numerical tests carried out on a single impurity Anderson model.Moreover,the adiabatic terminator alleviates the numerical instability problems in the long-time dissipative dynamics.展开更多
This work recommends methods of construction of equations of motion of mechanical systems in matrix form. The use of a matrix form allows one to write an equation of dynamics in compact form, convenient for the in ves...This work recommends methods of construction of equations of motion of mechanical systems in matrix form. The use of a matrix form allows one to write an equation of dynamics in compact form, convenient for the in vestigation of multidimensional mechanical systems with the help of computers. Use is made of different methods of constructing equations of motion, based on the basic laws of dynamics as well as on the principles of D Alambert-Le range, Hamilton-Ostrogradski and Gauss.展开更多
This paper is intended to apply a potential method of integration to solving the equations of holonomic and nonholonomic systems. For a holonomic system, the differential equations of motion can be written as a system...This paper is intended to apply a potential method of integration to solving the equations of holonomic and nonholonomic systems. For a holonomic system, the differential equations of motion can be written as a system of differential equations of first order and its fundamental partial differential equation is solved by using the potential method of integration. For a nonholonomic system, the equations of the corresponding holonomic system are solved by using the method and then the restriction of the nonholonomic constraints on the initial conditions of motion is added.展开更多
The algebraic structures of the dynamical equations for the rotational relativistic systems are studied. It is found that the dynamical equations of holonomic conservative rotational relativistic systems and the speci...The algebraic structures of the dynamical equations for the rotational relativistic systems are studied. It is found that the dynamical equations of holonomic conservative rotational relativistic systems and the special nonholonomic rotational relativistic systems have Lie's algebraic structure, and the dynamical equations of the general holonomic rotational relativistic systems and the general nonholonomic rotational relativistic systems have Lie admitted algebraic structure. At last the Poisson integrals of the dynamical equations for the rotational relativistic systems are given.展开更多
The accuracy of a flight simulation is highly dependent on the quality of the aerodynamic database and prediction accuracies of the aerodynamic coefficients and derivatives. A surrogate model is an approximation metho...The accuracy of a flight simulation is highly dependent on the quality of the aerodynamic database and prediction accuracies of the aerodynamic coefficients and derivatives. A surrogate model is an approximation method that is used to predict unknown functions based on the sampling data obtained by the design of experiments. This model can also be used to predict aerodynamic coefficients/derivatives using several measured points. The objective of this paper is to develop an efficient digital flight simulation by solving the equation of motion to predict the aerodynamics data using a surrogate model. Accordingly, there is a need to construct and investigate aerodynamic databases and compare the accuracy of the surrogate model with the exact solution, and hence solve the equation of motion for the flight simulation analysis. In this study, sample datas for models are acquired from the USAF Stability and Control DATCOM, and a database is constructed for two input variables (the angle of attack and Mach number), along with two derivatives of the X-force axis and three derivatives for the Z-force axis and pitching moment. Furthermore, a comparison of the value predicted by the Kriging model and the exact solution shows that its flight analysis prediction ability makes it possible to use the surrogate model in future analyses.展开更多
文摘In general relativity, the equation of motion of the spin is given by the equation of parallel transport, which is a result of the space-time geometry. Any result of the space-time geometry cannog be directly applied to gauge theory of gravity. In gauge theory of gravity, based on the viewpoint of the coupling between the spin and gravitational field, an equation of motlon of the spin is deduced. In the post Newtonian approximation, it is proved that this equation gives the same result as that of the equation of parallel transport. So, in the post Newtonian approximation, gauge theory of gravity gives out the same prediction on the precession of orbiting gyroscope as that of general relativity.
文摘Based on the coupfing between the spin of a particle and gravitoelectromagnetic field, the equation of motion of a spinning test particle in gravitational field is deduced. From this equation of motion, it is found that the motion of a spinning particle deviates from the geodesic trajectory, and this deviation originates from the coupling between the spin of the particle and gravitoelectromagnetic field, which is also the origin of Lense-Thirring effects. In post-Newtonian approximations, this equation gives the same results as those of Mathisson-Papapetrou equation. Effect of the deviation of geodesic trajectory is detectable.
文摘In this paper an equation of motion is presented for a general thick viscoelastic plate, including the effects of shear deformation, extrusion deformation and rotatory inertia. This equation is the generalization of equations of motion for the corresponding thick elastic plate, and it can be degenerated into several types of equations for various special cases.
文摘A new derivation of the vectorial equation of motion for a test particle in the Schwarzchild field is given which greatly simplifies the procedure given by C. A. Murray[1]
基金supported by the China NSF via Grants No.11535005 and No.11275077。
文摘In the standard Einstein-Cartan theory,matter fields couple to gravity through the Minimal Coupling Procedure(MCP),and yet leave the theory an ambiguity.Applying MCP to the action or to the equation of motion would lead to different gravitational couplings.We propose a new covariant derivative to remove the ambiguity and discuss the relation between our proposal and previous treatments on this subject.
文摘In this paper, the equations of motion for nonholonomic mechanical system with unilateral holonomic constraints and unilateral nonholonomic constraints are presented, and an example to illustrate the application of the result is given.
文摘We applied the method of Thermomechanical Dynamics (TMD) to a low-temperature Stirling engine, and the dissipative equation of motion and time-evolving physical quantities are self-consistently calculated for the first time in this field. The thermomechanical states of the heat engine are in Nonequilibrium Irreversible States (NISs), and time-dependent thermodynamic work W(t), internal energy E(t), energy dissipation or entropy Q<sub>d</sub>(t), and temperature T(t), are precisely studied and computed in TMD. We also introduced the new formalism, Q(t)-picture of thermodynamic heat-energy flows, for consistent analyses of NISs. Thermal flows in a long-time uniform heat flow and in a short-time heat flow are numerically studied as examples. In addition to the analysis of time-dependent physical quantities, the TMD analysis suggests that the concept of force and acceleration in Newtonian mechanics should be modified. The acceleration is defined as a continuously differentiable function of Class C<sup>2</sup> in Newtonian mechanics, but the thermomechanical dynamics demands piecewise continuity for acceleration and thermal force, required from physical reasons caused by frictional variations and thermal fluctuations. The acceleration has no direct physical meaning associated with force in TMD. The physical implications are fundamental for the concept of the macroscopic phenomena in NISs composed of systems in thermal and mechanical motion.
文摘This paper presents a field method for integrating the equations of motion of nonholonomic controllable systems. An example is given to illustrate the application of the method.
基金supported by the National Natural Science Foundation of China(No.21933011)the K.C.Wong Education Foundation。
文摘In a previous work[J.Chem.Phys.140,174105(2014)],we have shown that a mixed quantum classical(MQC)rate theory can be derived to investigate the quantum tunneling effects in the proton transfer reactions.However,the method is based on the high temperature approximation of the hierarchical equation of motion(HEOM)with the Debye-Drude spectral density,and results in a multistate Zusman type of equation.We now extend this theory to include quantum effects of the bath degrees of freedom.By writing the full HEOM into a multidimensional partial differential equation in phase space,we can define a new reaction coordinate,and the previous method can be generalized to the full quantum regime.The validity of the new method is demonstrated by using numerical examples,including the spin-Boson model,and the double well model for proton transfer reaction.The new method is found to resolve some key problems of the previous theory based on high temperature approximation,including possible numerical instability in long time simulation and wrong rate constant at low temperatures.
基金This work was supported by the National Natural Science Foundation of China (No.21033008 and No.21073169)the National Basic Research Program of China (No.2010CB923300 and No.2011CB921400)and the Hong Kong RGC (No.604709) and UGC (AoE/P04/08-2) is gratefully acknowledged.
文摘To advance hierarchical equations of motion as a standard theory for quantum dissipative dynamics, we put forward a mixed Heisenberg-SchrSdinger scheme with block-matrix implementation on efficient evaluation of nonlinear optical response function. The new approach is also integrated with optimized hierarchical theory and numerical filtering algorithm. Different configurations of coherent two-dimensional spectroscopy of model excitonic dimer systems are investigated, with focusing on the effects of intermolecular transfer coupling and bi-exciton interaction.
基金supported by the National Natural Science Foundation of China(11232002)the Ph.D.Student Foundation of Chinese Ministry of Education(30400002011105001)
文摘The forward flight of a model butterfly was stud- ied by simulation using the equations of motion coupled with the Navier-Stokes equations. The model butterfly moved under the action of aerodynamic and gravitational forces, where the aerodynamic forces were generated by flapping wings which moved with the body, allowing the body os- cillations of the model butterfly to be simulated. The main results are as follows: (1) The aerodynamic force produced by the wings is approximately perpendicular to the long-axis of body and is much larger in the downstroke than in the up- stroke. In the downstroke the body pitch angle is small and the large aerodynamic force points up and slightly backward, giving the weight-supporting vertical force and a small neg- ative horizontal force, whilst in the upstroke, the body an- gle is large and the relatively small aerodynamic force points forward and slightly downward, giving a positive horizon- tal force which overcomes the body drag and the negative horizontal force generated in the downstroke. (2) Pitching oscillation of the butterfly body plays an equivalent role of the wing-rotation of many other insects. (3) The body-mass- specific power of the model butterfly is 33.3 W/kg, not very different from that of many other insects, e.g., fruitflies and dragonflies.
文摘The relations between various couple stress tensors and their change rates are derived. The equations of angular momentum and the corresponding boundary conditions of incremental rate type are presented. Thus the equations of motion and the boundary conditions of incremental rate type of Cauchy form, Piola form and Kirchhoff from for polar continua are obtained in combination of these results with those for classical continuum mechanics derived by kuang Zhenbang.
基金Project supported by the Science and Technology Program of Xi’an City,China(Grant No.CXY1352WL34)
文摘In this paper we study the higher-order differential variational principle and differential equations of motion for mechanical systems in event space. Based on the higher-order d'Alembert principle of the system, the higher-order velocity energy and the higher-order acceleration energy of the system in event space are defined, the higher-order d'Alembert- Lagrange principle of the system in event space is established, and the parametric forms of Euler-Lagrange, Nielsen and Appell for this principle are given. Finally, the higher-order differential equations of motion for holonomic systems in event space are obtained.
文摘This paper presents one type of integrals and its condition of existence for the equations of motion of higher-order nonholonomic systems, including l-order integral (generalized energy integral), 2-order integral and p-order integral (p>2)All of these integrals can be constructed by the Lagrangian function of the system. Two examples are given to illustrate the application of the suggested method.
文摘The hierarchical equation of motion method has become one of the most popular numerical methods for describing the dissipative dynamics of open quantum systems linearly coupled to environment.However,its applications to systems with strong electron correlation are largely restrained by the computational cost,which is mainly caused by the high truncation tier L required to accurately characterize the strong correlation effect.In this work,we develop an adiabatic terminator by decoupling the principal dissipation mode with the fastest dissipation rate from the slower ones.The adiabatic terminator leads to substantially enhanced convergence with respect to L as demonstrated by the numerical tests carried out on a single impurity Anderson model.Moreover,the adiabatic terminator alleviates the numerical instability problems in the long-time dissipative dynamics.
文摘This work recommends methods of construction of equations of motion of mechanical systems in matrix form. The use of a matrix form allows one to write an equation of dynamics in compact form, convenient for the in vestigation of multidimensional mechanical systems with the help of computers. Use is made of different methods of constructing equations of motion, based on the basic laws of dynamics as well as on the principles of D Alambert-Le range, Hamilton-Ostrogradski and Gauss.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10272021 and 10572021 and the Doctoral Program Foundation of Institutions of Higher Education of China (Grant No 20040007022).
文摘This paper is intended to apply a potential method of integration to solving the equations of holonomic and nonholonomic systems. For a holonomic system, the differential equations of motion can be written as a system of differential equations of first order and its fundamental partial differential equation is solved by using the potential method of integration. For a nonholonomic system, the equations of the corresponding holonomic system are solved by using the method and then the restriction of the nonholonomic constraints on the initial conditions of motion is added.
文摘The algebraic structures of the dynamical equations for the rotational relativistic systems are studied. It is found that the dynamical equations of holonomic conservative rotational relativistic systems and the special nonholonomic rotational relativistic systems have Lie's algebraic structure, and the dynamical equations of the general holonomic rotational relativistic systems and the general nonholonomic rotational relativistic systems have Lie admitted algebraic structure. At last the Poisson integrals of the dynamical equations for the rotational relativistic systems are given.
文摘The accuracy of a flight simulation is highly dependent on the quality of the aerodynamic database and prediction accuracies of the aerodynamic coefficients and derivatives. A surrogate model is an approximation method that is used to predict unknown functions based on the sampling data obtained by the design of experiments. This model can also be used to predict aerodynamic coefficients/derivatives using several measured points. The objective of this paper is to develop an efficient digital flight simulation by solving the equation of motion to predict the aerodynamics data using a surrogate model. Accordingly, there is a need to construct and investigate aerodynamic databases and compare the accuracy of the surrogate model with the exact solution, and hence solve the equation of motion for the flight simulation analysis. In this study, sample datas for models are acquired from the USAF Stability and Control DATCOM, and a database is constructed for two input variables (the angle of attack and Mach number), along with two derivatives of the X-force axis and three derivatives for the Z-force axis and pitching moment. Furthermore, a comparison of the value predicted by the Kriging model and the exact solution shows that its flight analysis prediction ability makes it possible to use the surrogate model in future analyses.