Our study identifies a subtle deviation from Newton’s third law in the derivation of the ideal rocket equation, also known as the Tsiolkovsky Rocket Equation (TRE). TRE can be derived using a 1D elastic collision mod...Our study identifies a subtle deviation from Newton’s third law in the derivation of the ideal rocket equation, also known as the Tsiolkovsky Rocket Equation (TRE). TRE can be derived using a 1D elastic collision model of the momentum exchange between the differential propellant mass element (dm) and the rocket final mass (m1), in which dm initially travels forward to collide with m1 and rebounds to exit through the exhaust nozzle with a velocity that is known as the effective exhaust velocity ve. We observe that such a model does not explain how dm was able to acquire its initial forward velocity without the support of a reactive mass traveling in the opposite direction. We show instead that the initial kinetic energy of dm is generated from dm itself by a process of self-combustion and expansion. In our ideal rocket with a single particle dm confined inside a hollow tube with one closed end, we show that the process of self-combustion and expansion of dm will result in a pair of differential particles each with a mass dm/2, and each traveling away from one another along the tube axis, from the center of combustion. These two identical particles represent the active and reactive sub-components of dm, co-generated in compliance with Newton’s third law of equal action and reaction. Building on this model, we derive a linear momentum ODE of the system, the solution of which yields what we call the Revised Tsiolkovsky Rocket Equation (RTRE). We show that RTRE has a mathematical form that is similar to TRE, with the exception of the effective exhaust velocity (ve) term. The ve term in TRE is replaced in RTRE by the average of two distinct exhaust velocities that we refer to as fast-jet, vx<sub>1</sub>, and slow-jet, vx<sub>2</sub>. These two velocities correspond, respectively, to the velocities of the detonation pressure wave that is vectored directly towards the exhaust nozzle, and the retonation wave that is initially vectored in the direction of rocket propagation, but subsequently becomes reflected from the thrust surface of the combustion chamber to exit through the exhaust nozzle with a time lag behind the detonation wave. The detonation-retonation phenomenon is supported by experimental evidence in the published literature. Finally, we use a convolution model to simulate the composite exhaust pressure wave, highlighting the frequency spectrum of the pressure perturbations that are generated by the mutual interference between the fast-jet and slow-jet components. Our analysis offers insights into the origin of combustion oscillations in rocket engines, with possible extensions beyond rocket engineering into other fields of combustion engineering.展开更多
Research on vertical motion in mesoscale systems is an extraordinarily challenging effort.Allowing for fewer assumptions,a new form of generalized vertical motion equation and a generalized Omega equation are derived ...Research on vertical motion in mesoscale systems is an extraordinarily challenging effort.Allowing for fewer assumptions,a new form of generalized vertical motion equation and a generalized Omega equation are derived in the Cartesian coordinate system(nonhydrostatic equilibrium)and the isobaric coordinate system(hydrostatic equilibrium),respectively.The terms on the right-hand side of the equations,which comprise the Q vector,are composed of three factors:dynamic,thermodynamic,and mass.A heavy rain event that occurred from 18 to 19 July 2021 in southern Xinjiang was selected to analyze the characteristics of the diagnostic variable in the generalized vertical motion equation(Qz)and the diagnostic variable in the generalized Omega equation(Qp)using high-resolution model data.The results show that the horizontal distribution of the Qz-vector divergence at 5.5 km is roughly similar to the distribution of the Qp-vector divergence at 500 hPa,and that both relate well to the composite radar reflectivity,vertical motion,and hourly accumulated precipitation.The Qz-vector divergence is more effective in indicating weak precipitation.In vertical cross sections,regions with alternating positive and negative large values that match the precipitation are mainly concentrated in the middle levels for both forms of Q vectors.The temporal evolutions of vertically integrated Qz-vector divergence and Qp-vector divergence are generally similar.Both perform better than the classical quasigeostrophic Q vector and nongeostrophic Q vector in indicating the development of the precipitation system.展开更多
Let B^(H) be a fractional Brownian motion with Hurst index 1/2≤H<1.In this paper,we consider the equation(called the Ornstein-Uhlenbeck process with a linear self-repelling drift)dX_(t)^(H)=dB_(t)^(H)+σ X_(t)^(H)...Let B^(H) be a fractional Brownian motion with Hurst index 1/2≤H<1.In this paper,we consider the equation(called the Ornstein-Uhlenbeck process with a linear self-repelling drift)dX_(t)^(H)=dB_(t)^(H)+σ X_(t)^(H)dt+vdt-θ(∫_(0)^(t)(X_(t)^(H)-X_(s)^(H))ds)dt,whereθ<0,σ,v∈ℝ.The process is an analogue of self-attracting diffusion(Cranston,Le Jan.Math Ann,1995,303:87–93).Our main aim is to study the large time behaviors of the process.We show that the solution X^(H)diverges to infinity as t tends to infinity,and obtain the speed at which the process X^(H)diverges to infinity.展开更多
The motion of the moored ship in the harbor is a classical hydrodynamics problem that still faces many challenges in naval operations,such as cargo transfer and ship pairings between a big transport ship and some smal...The motion of the moored ship in the harbor is a classical hydrodynamics problem that still faces many challenges in naval operations,such as cargo transfer and ship pairings between a big transport ship and some small ships.A mathematical model is presented based on the Laplace equation utilizing the porous breakwater to investigate the moored ship motion in a partially absorbing/reflecting harbor.The motion of the moored ship is described with the hydrodynamic forces along the rotational motion(roll,pitch,and yaw)and translational motion(surge,sway,and heave).The efficiency of the numerical method is verified by comparing it with the analytical study of Yu and Chwang(1994)for the porous breakwater,and the moored ship motion is compared with the theoretical and experimental data obtained by Yoo(1998)and Takagi et al.(1993).Further,the current numerical scheme is implemented on the realistic Visakhapatnam Fishing port,India,in order to analyze the hydrodynamic forces on moored ship motion under resonance conditions.The model incorporates some essential strategies such as adding a porous breakwater and utilizing the wave absorber to reduce the port’s resonance.It has been observed that these tactics have a significant impact on the resonance inside the port for safe maritime navigation.Therefore,the current numerical model provides an efficient tool to reduce the resonance within the arbitrarily shaped ports for secure anchoring.展开更多
The constrained motion of a particle on an elliptical path is studied using Hamiltonian mechanics through Poisson bracket and Lagrangian mechanics through Euler Lagrange equation using non-natural Lagrangian. We calcu...The constrained motion of a particle on an elliptical path is studied using Hamiltonian mechanics through Poisson bracket and Lagrangian mechanics through Euler Lagrange equation using non-natural Lagrangian. We calculate the generalized momentum p<sub>θ</sub> and we find that this quantity is not conserved and the conjugate θ coordinate is not a cyclic coordinate.展开更多
We applied the method of Thermomechanical Dynamics (TMD) to a low-temperature Stirling engine, and the dissipative equation of motion and time-evolving physical quantities are self-consistently calculated for the firs...We applied the method of Thermomechanical Dynamics (TMD) to a low-temperature Stirling engine, and the dissipative equation of motion and time-evolving physical quantities are self-consistently calculated for the first time in this field. The thermomechanical states of the heat engine are in Nonequilibrium Irreversible States (NISs), and time-dependent thermodynamic work W(t), internal energy E(t), energy dissipation or entropy Q<sub>d</sub>(t), and temperature T(t), are precisely studied and computed in TMD. We also introduced the new formalism, Q(t)-picture of thermodynamic heat-energy flows, for consistent analyses of NISs. Thermal flows in a long-time uniform heat flow and in a short-time heat flow are numerically studied as examples. In addition to the analysis of time-dependent physical quantities, the TMD analysis suggests that the concept of force and acceleration in Newtonian mechanics should be modified. The acceleration is defined as a continuously differentiable function of Class C<sup>2</sup> in Newtonian mechanics, but the thermomechanical dynamics demands piecewise continuity for acceleration and thermal force, required from physical reasons caused by frictional variations and thermal fluctuations. The acceleration has no direct physical meaning associated with force in TMD. The physical implications are fundamental for the concept of the macroscopic phenomena in NISs composed of systems in thermal and mechanical motion.展开更多
To advance hierarchical equations of motion as a standard theory for quantum dissipative dynamics, we put forward a mixed Heisenberg-SchrSdinger scheme with block-matrix implementation on efficient evaluation of nonli...To advance hierarchical equations of motion as a standard theory for quantum dissipative dynamics, we put forward a mixed Heisenberg-SchrSdinger scheme with block-matrix implementation on efficient evaluation of nonlinear optical response function. The new approach is also integrated with optimized hierarchical theory and numerical filtering algorithm. Different configurations of coherent two-dimensional spectroscopy of model excitonic dimer systems are investigated, with focusing on the effects of intermolecular transfer coupling and bi-exciton interaction.展开更多
The forward flight of a model butterfly was stud- ied by simulation using the equations of motion coupled with the Navier-Stokes equations. The model butterfly moved under the action of aerodynamic and gravitational f...The forward flight of a model butterfly was stud- ied by simulation using the equations of motion coupled with the Navier-Stokes equations. The model butterfly moved under the action of aerodynamic and gravitational forces, where the aerodynamic forces were generated by flapping wings which moved with the body, allowing the body os- cillations of the model butterfly to be simulated. The main results are as follows: (1) The aerodynamic force produced by the wings is approximately perpendicular to the long-axis of body and is much larger in the downstroke than in the up- stroke. In the downstroke the body pitch angle is small and the large aerodynamic force points up and slightly backward, giving the weight-supporting vertical force and a small neg- ative horizontal force, whilst in the upstroke, the body an- gle is large and the relatively small aerodynamic force points forward and slightly downward, giving a positive horizon- tal force which overcomes the body drag and the negative horizontal force generated in the downstroke. (2) Pitching oscillation of the butterfly body plays an equivalent role of the wing-rotation of many other insects. (3) The body-mass- specific power of the model butterfly is 33.3 W/kg, not very different from that of many other insects, e.g., fruitflies and dragonflies.展开更多
Special Lie symmetry and the Hojman conserved quantity for Appell equations in a dynamical system of relative motion are investigated. The definition and the criterion of the special Lie symmetry of Appell equations i...Special Lie symmetry and the Hojman conserved quantity for Appell equations in a dynamical system of relative motion are investigated. The definition and the criterion of the special Lie symmetry of Appell equations in a dynamical system of relative motion under infinitesimal group transformation are presented. The expression of the equation for the special Lie symmetry of Appell equations and the Hojman conserved quantity, deduced directly from the special Lie symmetry in a dynamical system of relative motion, are obtained. An example is given to illustrate the application of the results.展开更多
Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been...Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been investigated intensively. Recently, the stability of highly nonlinear hybrid stochastic differential equations is studied by some researchers. In this paper, by using Peng’s G-expectation theory, we first prove the existence and uniqueness of solutions to SDDEs driven by G-Brownian motion (G-SDDEs) under local Lipschitz and linear growth conditions. Then the second kind of stability and the dependence of the solutions to G-SDDEs are studied. Finally, we explore the stability and boundedness of highly nonlinear G-SDDEs.展开更多
Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system of relative motion are studied.The definition and criterion of the Mei symmetry of Appell equations for a variable mass ...Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system of relative motion are studied.The definition and criterion of the Mei symmetry of Appell equations for a variable mass holonomic system of relative motion under the infinitesimal transformations of groups are given.The structural equation of Mei symmetry of Appell equations and the expression of Mei conserved quantity deduced directly from Mei symmetry for a variable mass holonomic system of relative motion are gained.Finally,an example is given to illustrate the application of the results.展开更多
Lie symmetry and conserved quantity deduced from Lie symmetry of Appell equations in a dynamical system of relative motion with Chetaev-type nonholonomic constraints are studied.The differential equations of motion of...Lie symmetry and conserved quantity deduced from Lie symmetry of Appell equations in a dynamical system of relative motion with Chetaev-type nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and criterion of Lie symmetry,the condition and the expression of generalized Hojman conserved quantity deduced from Lie symmetry for the system are obtained.The condition and the expression of Hojman conserved quantity deduced from special Lie symmetry for the system under invariable time are further obtained.An example is given to illustrate the application of the results.展开更多
The Lie symmetry and Hojman conserved quantity of Nielsen equations in a dynamical system of relative motion with nonholonomic constraint of the Chetaev type are studied. The differential equations of motion of the Ni...The Lie symmetry and Hojman conserved quantity of Nielsen equations in a dynamical system of relative motion with nonholonomic constraint of the Chetaev type are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Lie symmetry, and the expression of the Hojman conserved quantity deduced directly from the Lie symmetry for the system are obtained. An example is given to illustrate the application of the results.展开更多
The forces on rigid particles moving in relation to fluid having been studied and the equation of modifications of their expressions under different flow conditions discussed, a general form of equation for discrete p...The forces on rigid particles moving in relation to fluid having been studied and the equation of modifications of their expressions under different flow conditions discussed, a general form of equation for discrete particles' motion in arbitrary flow field is obtained. The mathematical features of the linear form of the equation are clarified and analytical solution of the linearized equation is gotten by means of Laplace transform. According to above theoretical results, the effects of particles' properties on its motion in several typical flow field are studied, with some meaningful conclusions being reached.展开更多
In this paper, the equations of motion for nonholonomic mechanical system with unilateral holonomic constraints and unilateral nonholonomic constraints are presented, and an example to illustrate the application of th...In this paper, the equations of motion for nonholonomic mechanical system with unilateral holonomic constraints and unilateral nonholonomic constraints are presented, and an example to illustrate the application of the result is given.展开更多
The relations between various couple stress tensors and their change rates are derived. The equations of angular momentum and the corresponding boundary conditions of incremental rate type are presented. Thus the equa...The relations between various couple stress tensors and their change rates are derived. The equations of angular momentum and the corresponding boundary conditions of incremental rate type are presented. Thus the equations of motion and the boundary conditions of incremental rate type of Cauchy form, Piola form and Kirchhoff from for polar continua are obtained in combination of these results with those for classical continuum mechanics derived by kuang Zhenbang.展开更多
In this paper,we investigate the controllability for neutral stochastic evolution equations driven by fractional Brownian motion with Hurst parameter H ∈(1/2,1) in a Hilbert space.We employ the α-norm in order to ...In this paper,we investigate the controllability for neutral stochastic evolution equations driven by fractional Brownian motion with Hurst parameter H ∈(1/2,1) in a Hilbert space.We employ the α-norm in order to reflect the relationship between H and the fractional power α.Sufficient conditions are established by using stochastic analysis theory and operator theory.An example is provided to illustrate the effectiveness of the proposed result.展开更多
The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied.The differential equations of motion of the Appell equ...The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and the criterion of the Mei symmetry,and the expression of the Mei conserved quantity deduced directly from the Mei symmetry for the system are obtained.An example is given to illustrate the application of the results.展开更多
The peridynamic motion equation was investigated once again.The origin of incompatibility between boundary conditions and peridynamics was analyzed.In order to eliminate this incompatibility,we proposed a new peridyna...The peridynamic motion equation was investigated once again.The origin of incompatibility between boundary conditions and peridynamics was analyzed.In order to eliminate this incompatibility,we proposed a new peridynamic motion equation in which the effects of boundary traction and boundary displacement constraint were introduced.The new peridynamic motion equation is invariant under the transformations of rigid translation and rotation.Meanwhile,it also satisfies the requirements of total linear and angular momentum equilibrium.By this motion equation,three kinds of boundary value problems containing the displacement boundary condition,the traction boundary condition and mixed boundary condition are characterized in peridynamics.As examples,we calculated static tension and longitudinal vibration of a finite rod.The acquired solutions exhibit obvious nonlocal features,and the vibration has the dispersion similar to one dimensional atom chain vibration.展开更多
In order to study the differences in vertical component between onshore and offshore motions,the vertical-to-horizontal peak ground acceleration ratio(V/H PGA ratio) and vertical-to-horizontal response spectral ratio(...In order to study the differences in vertical component between onshore and offshore motions,the vertical-to-horizontal peak ground acceleration ratio(V/H PGA ratio) and vertical-to-horizontal response spectral ratio(V/H) were investigated using the ground motion recordings from the K-NET network and the seafloor earthquake measuring system(SEMS).The results indicate that the vertical component of offshore motions is lower than that of onshore motions.The V/H PGA ratio of acceleration time histories at offshore stations is about 50%of the ratio at onshore stations.The V/H for offshore ground motions is lower than that for onshore motions,especially for periods less than 0.8 s.Furthermore,based on the results in statistical analysis for offshore recordings in the K-NET,the simplified V/H design equations for offshore motions in minor and moderate earthquakes are proposed for seismic analysis of offshore structures.展开更多
文摘Our study identifies a subtle deviation from Newton’s third law in the derivation of the ideal rocket equation, also known as the Tsiolkovsky Rocket Equation (TRE). TRE can be derived using a 1D elastic collision model of the momentum exchange between the differential propellant mass element (dm) and the rocket final mass (m1), in which dm initially travels forward to collide with m1 and rebounds to exit through the exhaust nozzle with a velocity that is known as the effective exhaust velocity ve. We observe that such a model does not explain how dm was able to acquire its initial forward velocity without the support of a reactive mass traveling in the opposite direction. We show instead that the initial kinetic energy of dm is generated from dm itself by a process of self-combustion and expansion. In our ideal rocket with a single particle dm confined inside a hollow tube with one closed end, we show that the process of self-combustion and expansion of dm will result in a pair of differential particles each with a mass dm/2, and each traveling away from one another along the tube axis, from the center of combustion. These two identical particles represent the active and reactive sub-components of dm, co-generated in compliance with Newton’s third law of equal action and reaction. Building on this model, we derive a linear momentum ODE of the system, the solution of which yields what we call the Revised Tsiolkovsky Rocket Equation (RTRE). We show that RTRE has a mathematical form that is similar to TRE, with the exception of the effective exhaust velocity (ve) term. The ve term in TRE is replaced in RTRE by the average of two distinct exhaust velocities that we refer to as fast-jet, vx<sub>1</sub>, and slow-jet, vx<sub>2</sub>. These two velocities correspond, respectively, to the velocities of the detonation pressure wave that is vectored directly towards the exhaust nozzle, and the retonation wave that is initially vectored in the direction of rocket propagation, but subsequently becomes reflected from the thrust surface of the combustion chamber to exit through the exhaust nozzle with a time lag behind the detonation wave. The detonation-retonation phenomenon is supported by experimental evidence in the published literature. Finally, we use a convolution model to simulate the composite exhaust pressure wave, highlighting the frequency spectrum of the pressure perturbations that are generated by the mutual interference between the fast-jet and slow-jet components. Our analysis offers insights into the origin of combustion oscillations in rocket engines, with possible extensions beyond rocket engineering into other fields of combustion engineering.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA17010105)National Key Research and Development Program(Grant No.2018YFC1507104)+2 种基金Science and Technology Development Plan Project of Jilin Province(20180201035SF)Flexible Talents Introducing Project of Xinjiang(2019)the National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulation Facility”(EarthLab)。
文摘Research on vertical motion in mesoscale systems is an extraordinarily challenging effort.Allowing for fewer assumptions,a new form of generalized vertical motion equation and a generalized Omega equation are derived in the Cartesian coordinate system(nonhydrostatic equilibrium)and the isobaric coordinate system(hydrostatic equilibrium),respectively.The terms on the right-hand side of the equations,which comprise the Q vector,are composed of three factors:dynamic,thermodynamic,and mass.A heavy rain event that occurred from 18 to 19 July 2021 in southern Xinjiang was selected to analyze the characteristics of the diagnostic variable in the generalized vertical motion equation(Qz)and the diagnostic variable in the generalized Omega equation(Qp)using high-resolution model data.The results show that the horizontal distribution of the Qz-vector divergence at 5.5 km is roughly similar to the distribution of the Qp-vector divergence at 500 hPa,and that both relate well to the composite radar reflectivity,vertical motion,and hourly accumulated precipitation.The Qz-vector divergence is more effective in indicating weak precipitation.In vertical cross sections,regions with alternating positive and negative large values that match the precipitation are mainly concentrated in the middle levels for both forms of Q vectors.The temporal evolutions of vertically integrated Qz-vector divergence and Qp-vector divergence are generally similar.Both perform better than the classical quasigeostrophic Q vector and nongeostrophic Q vector in indicating the development of the precipitation system.
文摘Let B^(H) be a fractional Brownian motion with Hurst index 1/2≤H<1.In this paper,we consider the equation(called the Ornstein-Uhlenbeck process with a linear self-repelling drift)dX_(t)^(H)=dB_(t)^(H)+σ X_(t)^(H)dt+vdt-θ(∫_(0)^(t)(X_(t)^(H)-X_(s)^(H))ds)dt,whereθ<0,σ,v∈ℝ.The process is an analogue of self-attracting diffusion(Cranston,Le Jan.Math Ann,1995,303:87–93).Our main aim is to study the large time behaviors of the process.We show that the solution X^(H)diverges to infinity as t tends to infinity,and obtain the speed at which the process X^(H)diverges to infinity.
文摘The motion of the moored ship in the harbor is a classical hydrodynamics problem that still faces many challenges in naval operations,such as cargo transfer and ship pairings between a big transport ship and some small ships.A mathematical model is presented based on the Laplace equation utilizing the porous breakwater to investigate the moored ship motion in a partially absorbing/reflecting harbor.The motion of the moored ship is described with the hydrodynamic forces along the rotational motion(roll,pitch,and yaw)and translational motion(surge,sway,and heave).The efficiency of the numerical method is verified by comparing it with the analytical study of Yu and Chwang(1994)for the porous breakwater,and the moored ship motion is compared with the theoretical and experimental data obtained by Yoo(1998)and Takagi et al.(1993).Further,the current numerical scheme is implemented on the realistic Visakhapatnam Fishing port,India,in order to analyze the hydrodynamic forces on moored ship motion under resonance conditions.The model incorporates some essential strategies such as adding a porous breakwater and utilizing the wave absorber to reduce the port’s resonance.It has been observed that these tactics have a significant impact on the resonance inside the port for safe maritime navigation.Therefore,the current numerical model provides an efficient tool to reduce the resonance within the arbitrarily shaped ports for secure anchoring.
文摘The constrained motion of a particle on an elliptical path is studied using Hamiltonian mechanics through Poisson bracket and Lagrangian mechanics through Euler Lagrange equation using non-natural Lagrangian. We calculate the generalized momentum p<sub>θ</sub> and we find that this quantity is not conserved and the conjugate θ coordinate is not a cyclic coordinate.
文摘We applied the method of Thermomechanical Dynamics (TMD) to a low-temperature Stirling engine, and the dissipative equation of motion and time-evolving physical quantities are self-consistently calculated for the first time in this field. The thermomechanical states of the heat engine are in Nonequilibrium Irreversible States (NISs), and time-dependent thermodynamic work W(t), internal energy E(t), energy dissipation or entropy Q<sub>d</sub>(t), and temperature T(t), are precisely studied and computed in TMD. We also introduced the new formalism, Q(t)-picture of thermodynamic heat-energy flows, for consistent analyses of NISs. Thermal flows in a long-time uniform heat flow and in a short-time heat flow are numerically studied as examples. In addition to the analysis of time-dependent physical quantities, the TMD analysis suggests that the concept of force and acceleration in Newtonian mechanics should be modified. The acceleration is defined as a continuously differentiable function of Class C<sup>2</sup> in Newtonian mechanics, but the thermomechanical dynamics demands piecewise continuity for acceleration and thermal force, required from physical reasons caused by frictional variations and thermal fluctuations. The acceleration has no direct physical meaning associated with force in TMD. The physical implications are fundamental for the concept of the macroscopic phenomena in NISs composed of systems in thermal and mechanical motion.
基金This work was supported by the National Natural Science Foundation of China (No.21033008 and No.21073169)the National Basic Research Program of China (No.2010CB923300 and No.2011CB921400)and the Hong Kong RGC (No.604709) and UGC (AoE/P04/08-2) is gratefully acknowledged.
文摘To advance hierarchical equations of motion as a standard theory for quantum dissipative dynamics, we put forward a mixed Heisenberg-SchrSdinger scheme with block-matrix implementation on efficient evaluation of nonlinear optical response function. The new approach is also integrated with optimized hierarchical theory and numerical filtering algorithm. Different configurations of coherent two-dimensional spectroscopy of model excitonic dimer systems are investigated, with focusing on the effects of intermolecular transfer coupling and bi-exciton interaction.
基金supported by the National Natural Science Foundation of China(11232002)the Ph.D.Student Foundation of Chinese Ministry of Education(30400002011105001)
文摘The forward flight of a model butterfly was stud- ied by simulation using the equations of motion coupled with the Navier-Stokes equations. The model butterfly moved under the action of aerodynamic and gravitational forces, where the aerodynamic forces were generated by flapping wings which moved with the body, allowing the body os- cillations of the model butterfly to be simulated. The main results are as follows: (1) The aerodynamic force produced by the wings is approximately perpendicular to the long-axis of body and is much larger in the downstroke than in the up- stroke. In the downstroke the body pitch angle is small and the large aerodynamic force points up and slightly backward, giving the weight-supporting vertical force and a small neg- ative horizontal force, whilst in the upstroke, the body an- gle is large and the relatively small aerodynamic force points forward and slightly downward, giving a positive horizon- tal force which overcomes the body drag and the negative horizontal force generated in the downstroke. (2) Pitching oscillation of the butterfly body plays an equivalent role of the wing-rotation of many other insects. (3) The body-mass- specific power of the model butterfly is 33.3 W/kg, not very different from that of many other insects, e.g., fruitflies and dragonflies.
文摘Special Lie symmetry and the Hojman conserved quantity for Appell equations in a dynamical system of relative motion are investigated. The definition and the criterion of the special Lie symmetry of Appell equations in a dynamical system of relative motion under infinitesimal group transformation are presented. The expression of the equation for the special Lie symmetry of Appell equations and the Hojman conserved quantity, deduced directly from the special Lie symmetry in a dynamical system of relative motion, are obtained. An example is given to illustrate the application of the results.
基金Supported by the National Natural Science Foundation of China(71571001)
文摘Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been investigated intensively. Recently, the stability of highly nonlinear hybrid stochastic differential equations is studied by some researchers. In this paper, by using Peng’s G-expectation theory, we first prove the existence and uniqueness of solutions to SDDEs driven by G-Brownian motion (G-SDDEs) under local Lipschitz and linear growth conditions. Then the second kind of stability and the dependence of the solutions to G-SDDEs are studied. Finally, we explore the stability and boundedness of highly nonlinear G-SDDEs.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11142014 and 61178032)
文摘Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system of relative motion are studied.The definition and criterion of the Mei symmetry of Appell equations for a variable mass holonomic system of relative motion under the infinitesimal transformations of groups are given.The structural equation of Mei symmetry of Appell equations and the expression of Mei conserved quantity deduced directly from Mei symmetry for a variable mass holonomic system of relative motion are gained.Finally,an example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11142014)the Scientific Research and Innovation Plan for College Graduates of Jiangsu Province,China (Grant No. CXLX12_0720)
文摘Lie symmetry and conserved quantity deduced from Lie symmetry of Appell equations in a dynamical system of relative motion with Chetaev-type nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and criterion of Lie symmetry,the condition and the expression of generalized Hojman conserved quantity deduced from Lie symmetry for the system are obtained.The condition and the expression of Hojman conserved quantity deduced from special Lie symmetry for the system under invariable time are further obtained.An example is given to illustrate the application of the results.
文摘The Lie symmetry and Hojman conserved quantity of Nielsen equations in a dynamical system of relative motion with nonholonomic constraint of the Chetaev type are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Lie symmetry, and the expression of the Hojman conserved quantity deduced directly from the Lie symmetry for the system are obtained. An example is given to illustrate the application of the results.
文摘The forces on rigid particles moving in relation to fluid having been studied and the equation of modifications of their expressions under different flow conditions discussed, a general form of equation for discrete particles' motion in arbitrary flow field is obtained. The mathematical features of the linear form of the equation are clarified and analytical solution of the linearized equation is gotten by means of Laplace transform. According to above theoretical results, the effects of particles' properties on its motion in several typical flow field are studied, with some meaningful conclusions being reached.
文摘In this paper, the equations of motion for nonholonomic mechanical system with unilateral holonomic constraints and unilateral nonholonomic constraints are presented, and an example to illustrate the application of the result is given.
文摘The relations between various couple stress tensors and their change rates are derived. The equations of angular momentum and the corresponding boundary conditions of incremental rate type are presented. Thus the equations of motion and the boundary conditions of incremental rate type of Cauchy form, Piola form and Kirchhoff from for polar continua are obtained in combination of these results with those for classical continuum mechanics derived by kuang Zhenbang.
基金supported by NSFC(11271020,11401010)Natural Science Foundation of Anhui Province(1308085QA14)+1 种基金supported by NSFC(11571071)Innovation Program of Shanghai Municipal Education Commission(12ZZ063)
文摘In this paper,we investigate the controllability for neutral stochastic evolution equations driven by fractional Brownian motion with Hurst parameter H ∈(1/2,1) in a Hilbert space.We employ the α-norm in order to reflect the relationship between H and the fractional power α.Sufficient conditions are established by using stochastic analysis theory and operator theory.An example is provided to illustrate the effectiveness of the proposed result.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11142014 and 61178032)
文摘The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and the criterion of the Mei symmetry,and the expression of the Mei conserved quantity deduced directly from the Mei symmetry for the system are obtained.An example is given to illustrate the application of the results.
基金This work was supported by the National Natural Science Foundation of China(Grant 11672129)the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and Astronautics,MCMS-I-0218G01).
文摘The peridynamic motion equation was investigated once again.The origin of incompatibility between boundary conditions and peridynamics was analyzed.In order to eliminate this incompatibility,we proposed a new peridynamic motion equation in which the effects of boundary traction and boundary displacement constraint were introduced.The new peridynamic motion equation is invariant under the transformations of rigid translation and rotation.Meanwhile,it also satisfies the requirements of total linear and angular momentum equilibrium.By this motion equation,three kinds of boundary value problems containing the displacement boundary condition,the traction boundary condition and mixed boundary condition are characterized in peridynamics.As examples,we calculated static tension and longitudinal vibration of a finite rod.The acquired solutions exhibit obvious nonlocal features,and the vibration has the dispersion similar to one dimensional atom chain vibration.
基金Project(2011CB013605)supported by the National Basic Research Development Program of China(973 Program)Projects(51178071,51008041)supported by the National Natural Science Foundation of ChinaProject(NCET-12-0751)supported by the New Century Excellent Talents Program in University of Ministry of Education of China
文摘In order to study the differences in vertical component between onshore and offshore motions,the vertical-to-horizontal peak ground acceleration ratio(V/H PGA ratio) and vertical-to-horizontal response spectral ratio(V/H) were investigated using the ground motion recordings from the K-NET network and the seafloor earthquake measuring system(SEMS).The results indicate that the vertical component of offshore motions is lower than that of onshore motions.The V/H PGA ratio of acceleration time histories at offshore stations is about 50%of the ratio at onshore stations.The V/H for offshore ground motions is lower than that for onshore motions,especially for periods less than 0.8 s.Furthermore,based on the results in statistical analysis for offshore recordings in the K-NET,the simplified V/H design equations for offshore motions in minor and moderate earthquakes are proposed for seismic analysis of offshore structures.