In the era of precision medicine,cancer researchers and oncologists are eagerly searching for more realistic,cost effective,and timely tumor models to aid drug development and precision oncology.Tumor models that can ...In the era of precision medicine,cancer researchers and oncologists are eagerly searching for more realistic,cost effective,and timely tumor models to aid drug development and precision oncology.Tumor models that can faithfully recapitulate the histological and molecular characteristics of various human tumors will be extremely valuable in increasing the successful rate of oncology drug development and discovering the most efficacious treatment regimen for cancer patients.Two‐dimensional(2D)cultured cancer cell lines,genetically engineered mouse tumor(GEMT)models,and patient‐derived tumor xenograft(PDTX)models have been widely used to investigate the biology of various types of cancers and test the efficacy of oncology drug candidates.However,due to either the failure to faithfully recapitulate the complexity of patient tumors in the case of 2D cultured cancer cells,or high cost and untimely for drug screening and testing in the case of GEMT and PDTX,new tumor models are urgently needed.The recently developed patient‐derived tumor organoids(PDTO)offer great potentials in uncovering novel biology of cancer development,accelerating the discovery of oncology drugs,and individualizing the treatment of cancers.In this review,we will summarize the recent progress in utilizing PDTO for oncology drug discovery.In addition,we will discuss the potentials and limitations of the current PDTO tumor models.展开更多
In order to improve the dynamic stability of precision instruments during the design process, a compositive design method based on modal analysis of structure is proposed. With uniform boundary conditions and material...In order to improve the dynamic stability of precision instruments during the design process, a compositive design method based on modal analysis of structure is proposed. With uniform boundary conditions and material characters, the results of Finite Element Analysis (FEA) vary with models. It should be checked whether the model is correctly simplified. Modal experiments can be used for such purpose. The method combines the high efficiency and agility of FEA with the reliability and accuracy of experiments, and avoids the drawbacks of FEA or experiments, such as uncertainty of FEA and high cost of experiments. Taking rotor frame structure as an example, this method is applied as follows: First the modal characters of structure are analyzed with FEA, and then the natural frequencies of the structure are tested by experiments to check the reliability of FEA method, and finally the design scheme is optimized by modifying structure parameters with confirmed FEA.展开更多
Substantially lightweight brake discs with high wear resistance are highly desirable in the automotive industry.This paper presents an investigation of the precision-engineering design and development of automotive br...Substantially lightweight brake discs with high wear resistance are highly desirable in the automotive industry.This paper presents an investigation of the precision-engineering design and development of automotive brake discs using nonhomogeneous Al/SiC metal-matrixcomposite materials.The design and development are based on modeling and analysis following stringent precision-engineering principles,i.e.,brake-disc systems that operate repeatably and stably over time as enabled by precision-engineering design.The design and development are further supported by tribological experimental testing and finite-element simulations.The results show the industrial feasibility of the innovative design approach and the application merits of using advanced metal-matrix-composite materials for next-generation automotive and electric vehicles.展开更多
A high accuracy test of the weak equivalence principle(WEP) is of great scientific significance no matter whether its result is positive. We analyze the gravity gradient effect which is a main systematic error sourc...A high accuracy test of the weak equivalence principle(WEP) is of great scientific significance no matter whether its result is positive. We analyze the gravity gradient effect which is a main systematic error source in the test of WEP.The result shows that the uncompensated gravity gradient effect from the coupling term of the dominated gravity gradient multipole moment component q_(21) and the relative multipole field component Q_(21) contributes to an uncertainty of 1×10^(-11) on the E otv os parameter. We make a Q_(21) compensation to reduce the effect by about 20 times, and the limit of the test precision due to this coupling is improved to a level of a part in 10^(13).展开更多
The importance of "precise" test values and their verification is growing in every industry throughout the world, lnterlaboratory studies constitute a basis for this. The high expenses and mathematical work required...The importance of "precise" test values and their verification is growing in every industry throughout the world, lnterlaboratory studies constitute a basis for this. The high expenses and mathematical work required to carry out proper interlaboratory studies are frequently considered reasons not to conduct such studies. This makes it all the more important to emphasize the various advantages of an accurate interlaboratory study. In addition to providing precision data for the test method, it is also possible to carry out laboratory evaluations, which is important for accredited test laboratories. Furthermore, existing test methods can be optimized, refer- ence material can be obtained, and test methods can be compared. Optimized test instructions can also be generated using the findings and precision data. These advantages will be described in detail by means of examples below.展开更多
Due to the particularity of its location algorithm,there are some unique difficulties and features regarding the test of target motion states of multilateration(MLAT)system for airport surface surveillance.This paper ...Due to the particularity of its location algorithm,there are some unique difficulties and features regarding the test of target motion states of multilateration(MLAT)system for airport surface surveillance.This paper proposed a test method applicable for the airport surface surveillance MLAT system,which can effectively determine whether the target is static or moving at a certain speed.Via a normalized test statistic designed in the sliding data window,the proposed method not only eliminates the impact of geometry Dilution of precision(GDOP)effectively,but also transforms the test of different motion states into the test of different probability density functions.Meanwhile,by adjusting the size of the sliding window,it can fulfill different test performance requirements.The method was developed through strict theoretical extrapolation and performance analysis,and simulations results verified its correctness and effectiveness.展开更多
To verify the precision and accuracy of transglutaminase antibodies (TGA) assays across Mediterranean countries. METHODSThis study involved 8 referral centres for celiac disease (CD) in 7 Mediterranean countries. A ce...To verify the precision and accuracy of transglutaminase antibodies (TGA) assays across Mediterranean countries. METHODSThis study involved 8 referral centres for celiac disease (CD) in 7 Mediterranean countries. A central laboratory prepared 8 kits of 7 blinded and randomized serum samples, with a titrated amount of Human TGA IgA. Each sample was analysed three times on three different days, with each centre running a total of 21 tests. The results were included in a blindly coded report form, which was sent to the coordinator centre. The coordinator estimated the mean coefficient of Variation (CoVar = σ/μ), the mean accuracy (Accur = Vobserved - Vreal) and the mean percent variation (Var% = [(Vobserved - Vreal)/Vreal] × 100). RESULTSThe analysis showed that 79.17% of the mean variation fell between -25% and +25% of the expected value, with the accuracy and precision progressively increasing with higher titres of TGA. From values 1.25 times greater than the normal cut-off, the measurements were highly reliable. CONCLUSIONTGA estimation is a crucial step for the diagnosis of CD; given its accuracy and precision, clinicians could be confident in establishing a diagnosis.展开更多
This paper proposes a novel method based on statistical tests of hypotheses, such as F-ratio and Welch’s t-tests. The input query image is examined whether it is a textured or structured. If it is structured, the sha...This paper proposes a novel method based on statistical tests of hypotheses, such as F-ratio and Welch’s t-tests. The input query image is examined whether it is a textured or structured. If it is structured, the shapes are segregated into various regions according to its nature;otherwise, it is treated as textured image and considered the entire image as it is for the experiment. The aforesaid tests are applied regions-wise. First, the F-ratio test is applied, if the images pass the test, then it is proceeded to test the spectrum of energy, i.e. means of the two images. If the images pass both tests, then it is concluded that the two images are the same or similar. Otherwise, they differ. Since the proposed system is distribution-based, it is invariant for rotation and scaling. Also, the system facilitates the user to fix the number of images to be retrieved, because the user can fix the level of significance according to their requirements. These are the main advantages of the proposed system.展开更多
文摘In the era of precision medicine,cancer researchers and oncologists are eagerly searching for more realistic,cost effective,and timely tumor models to aid drug development and precision oncology.Tumor models that can faithfully recapitulate the histological and molecular characteristics of various human tumors will be extremely valuable in increasing the successful rate of oncology drug development and discovering the most efficacious treatment regimen for cancer patients.Two‐dimensional(2D)cultured cancer cell lines,genetically engineered mouse tumor(GEMT)models,and patient‐derived tumor xenograft(PDTX)models have been widely used to investigate the biology of various types of cancers and test the efficacy of oncology drug candidates.However,due to either the failure to faithfully recapitulate the complexity of patient tumors in the case of 2D cultured cancer cells,or high cost and untimely for drug screening and testing in the case of GEMT and PDTX,new tumor models are urgently needed.The recently developed patient‐derived tumor organoids(PDTO)offer great potentials in uncovering novel biology of cancer development,accelerating the discovery of oncology drugs,and individualizing the treatment of cancers.In this review,we will summarize the recent progress in utilizing PDTO for oncology drug discovery.In addition,we will discuss the potentials and limitations of the current PDTO tumor models.
文摘In order to improve the dynamic stability of precision instruments during the design process, a compositive design method based on modal analysis of structure is proposed. With uniform boundary conditions and material characters, the results of Finite Element Analysis (FEA) vary with models. It should be checked whether the model is correctly simplified. Modal experiments can be used for such purpose. The method combines the high efficiency and agility of FEA with the reliability and accuracy of experiments, and avoids the drawbacks of FEA or experiments, such as uncertainty of FEA and high cost of experiments. Taking rotor frame structure as an example, this method is applied as follows: First the modal characters of structure are analyzed with FEA, and then the natural frequencies of the structure are tested by experiments to check the reliability of FEA method, and finally the design scheme is optimized by modifying structure parameters with confirmed FEA.
文摘Substantially lightweight brake discs with high wear resistance are highly desirable in the automotive industry.This paper presents an investigation of the precision-engineering design and development of automotive brake discs using nonhomogeneous Al/SiC metal-matrixcomposite materials.The design and development are based on modeling and analysis following stringent precision-engineering principles,i.e.,brake-disc systems that operate repeatably and stably over time as enabled by precision-engineering design.The design and development are further supported by tribological experimental testing and finite-element simulations.The results show the industrial feasibility of the innovative design approach and the application merits of using advanced metal-matrix-composite materials for next-generation automotive and electric vehicles.
基金supported by the National Natural Science Foundation of China(Grant Nos.11575160 and 11605065)
文摘A high accuracy test of the weak equivalence principle(WEP) is of great scientific significance no matter whether its result is positive. We analyze the gravity gradient effect which is a main systematic error source in the test of WEP.The result shows that the uncompensated gravity gradient effect from the coupling term of the dominated gravity gradient multipole moment component q_(21) and the relative multipole field component Q_(21) contributes to an uncertainty of 1×10^(-11) on the E otv os parameter. We make a Q_(21) compensation to reduce the effect by about 20 times, and the limit of the test precision due to this coupling is improved to a level of a part in 10^(13).
文摘The importance of "precise" test values and their verification is growing in every industry throughout the world, lnterlaboratory studies constitute a basis for this. The high expenses and mathematical work required to carry out proper interlaboratory studies are frequently considered reasons not to conduct such studies. This makes it all the more important to emphasize the various advantages of an accurate interlaboratory study. In addition to providing precision data for the test method, it is also possible to carry out laboratory evaluations, which is important for accredited test laboratories. Furthermore, existing test methods can be optimized, refer- ence material can be obtained, and test methods can be compared. Optimized test instructions can also be generated using the findings and precision data. These advantages will be described in detail by means of examples below.
基金supported by the National Science and Technology Pillar Program of China (No.2011BAH24B06)the National Nature Science Foundation of China+1 种基金Chinese Civil Aviation Jointly Funded Foundation Project (No.U1433129)the Sichuan Provincial Department of Education Foundation(No.13ZB0287)
文摘Due to the particularity of its location algorithm,there are some unique difficulties and features regarding the test of target motion states of multilateration(MLAT)system for airport surface surveillance.This paper proposed a test method applicable for the airport surface surveillance MLAT system,which can effectively determine whether the target is static or moving at a certain speed.Via a normalized test statistic designed in the sliding data window,the proposed method not only eliminates the impact of geometry Dilution of precision(GDOP)effectively,but also transforms the test of different motion states into the test of different probability density functions.Meanwhile,by adjusting the size of the sliding window,it can fulfill different test performance requirements.The method was developed through strict theoretical extrapolation and performance analysis,and simulations results verified its correctness and effectiveness.
基金Supported by Italian Department of Health,Direction of International AffairsEuromed action.Project:MEDICEL-Mediterranean Network for Celiac Disease-Phase II(CUP No.E61J11000450001)European Laboratory for Food Induced Disease,Federico II University,Naples
文摘To verify the precision and accuracy of transglutaminase antibodies (TGA) assays across Mediterranean countries. METHODSThis study involved 8 referral centres for celiac disease (CD) in 7 Mediterranean countries. A central laboratory prepared 8 kits of 7 blinded and randomized serum samples, with a titrated amount of Human TGA IgA. Each sample was analysed three times on three different days, with each centre running a total of 21 tests. The results were included in a blindly coded report form, which was sent to the coordinator centre. The coordinator estimated the mean coefficient of Variation (CoVar = σ/μ), the mean accuracy (Accur = Vobserved - Vreal) and the mean percent variation (Var% = [(Vobserved - Vreal)/Vreal] × 100). RESULTSThe analysis showed that 79.17% of the mean variation fell between -25% and +25% of the expected value, with the accuracy and precision progressively increasing with higher titres of TGA. From values 1.25 times greater than the normal cut-off, the measurements were highly reliable. CONCLUSIONTGA estimation is a crucial step for the diagnosis of CD; given its accuracy and precision, clinicians could be confident in establishing a diagnosis.
文摘This paper proposes a novel method based on statistical tests of hypotheses, such as F-ratio and Welch’s t-tests. The input query image is examined whether it is a textured or structured. If it is structured, the shapes are segregated into various regions according to its nature;otherwise, it is treated as textured image and considered the entire image as it is for the experiment. The aforesaid tests are applied regions-wise. First, the F-ratio test is applied, if the images pass the test, then it is proceeded to test the spectrum of energy, i.e. means of the two images. If the images pass both tests, then it is concluded that the two images are the same or similar. Otherwise, they differ. Since the proposed system is distribution-based, it is invariant for rotation and scaling. Also, the system facilitates the user to fix the number of images to be retrieved, because the user can fix the level of significance according to their requirements. These are the main advantages of the proposed system.