In order to solve the problem of metal impurities mixed in the production line of wood pulp nonwoven raw materials,intelligent metal detection and disposal automation equipment is designed.Based on the principle of el...In order to solve the problem of metal impurities mixed in the production line of wood pulp nonwoven raw materials,intelligent metal detection and disposal automation equipment is designed.Based on the principle of electromagnetic induction,the precise positioning of metal coordinates is realized by initial inspection and multi-directional re-inspection.Based on a geometry optimization driving algorithm,the cutting area is determined by locating the center of the circle that covers the maximum area.This approach aims to minimize the cutting area and maximize the use of materials.Additionally,the method strives to preserve as many fabrics at the edges as possible by employing the farthest edge covering circle algorithm.Based on a speed compensation algorithm,the flexible switching of upper and lower rolls is realized to ensure the maximum production efficiency.Compared with the metal detection device in the existing production line,the designed automation equipment has the advantages of higher detection sensitivity,more accurate metal coordinate positioning,smaller cutting material areas and higher production efficiency,which can make the production process more continuous,automated and intelligent.展开更多
The manual picking of strawberries is inefficient and costly,limiting scalability and economic benefits.Mechanizing this process reduces labor demands,improves working conditions,and modernizes the strawberry industry...The manual picking of strawberries is inefficient and costly,limiting scalability and economic benefits.Mechanizing this process reduces labor demands,improves working conditions,and modernizes the strawberry industry.Target detection technology,crucial for mechanized picking,must accurately determine strawberry maturity.This study presents an enhanced YOLOv8s model addressing current machine learning issues like accuracy,parameters,and complexity.The improved model replaces the Bottleneck structure in C2f with the FasterNet network,integrates an efficient multi-scale attention mechanism,and uses the Ghost module in the backbone to reduce computational load while maintaining performance.It also introduces Wise-IoU for bounding box regression loss,improving recognition accuracy.The YOLOv8s-FEGW model achieves a 93.8%mAP in detecting strawberry ripeness,with significant reductions in parameters(36.8%),complexity(34.6%),and model size(37.7%),alongside a 12.7% Frames Per Second(FPS)boost.These enhancements result in excellent detection capabilities,supporting agricultural automation and intelligence.展开更多
基金National Key Research and Development Program of China(Nos.2022YFB4700600 and 2022YFB4700605)。
文摘In order to solve the problem of metal impurities mixed in the production line of wood pulp nonwoven raw materials,intelligent metal detection and disposal automation equipment is designed.Based on the principle of electromagnetic induction,the precise positioning of metal coordinates is realized by initial inspection and multi-directional re-inspection.Based on a geometry optimization driving algorithm,the cutting area is determined by locating the center of the circle that covers the maximum area.This approach aims to minimize the cutting area and maximize the use of materials.Additionally,the method strives to preserve as many fabrics at the edges as possible by employing the farthest edge covering circle algorithm.Based on a speed compensation algorithm,the flexible switching of upper and lower rolls is realized to ensure the maximum production efficiency.Compared with the metal detection device in the existing production line,the designed automation equipment has the advantages of higher detection sensitivity,more accurate metal coordinate positioning,smaller cutting material areas and higher production efficiency,which can make the production process more continuous,automated and intelligent.
基金funded by the National Engineering Research Center of Special Equipment and Power System for Ship and Marine Engineering and the Shanghai Engineering Research Center of Ship Intelligent Maintenance and Energy Efficiency Control(20DZ2252300).
文摘The manual picking of strawberries is inefficient and costly,limiting scalability and economic benefits.Mechanizing this process reduces labor demands,improves working conditions,and modernizes the strawberry industry.Target detection technology,crucial for mechanized picking,must accurately determine strawberry maturity.This study presents an enhanced YOLOv8s model addressing current machine learning issues like accuracy,parameters,and complexity.The improved model replaces the Bottleneck structure in C2f with the FasterNet network,integrates an efficient multi-scale attention mechanism,and uses the Ghost module in the backbone to reduce computational load while maintaining performance.It also introduces Wise-IoU for bounding box regression loss,improving recognition accuracy.The YOLOv8s-FEGW model achieves a 93.8%mAP in detecting strawberry ripeness,with significant reductions in parameters(36.8%),complexity(34.6%),and model size(37.7%),alongside a 12.7% Frames Per Second(FPS)boost.These enhancements result in excellent detection capabilities,supporting agricultural automation and intelligence.