Founded in 1978, the Zhejiang Machinery Equipment Import & Export Corporation is an industrial and trading company engaged in the import and export business of machinery, electronics and instruments. Since 1980, w...Founded in 1978, the Zhejiang Machinery Equipment Import & Export Corporation is an industrial and trading company engaged in the import and export business of machinery, electronics and instruments. Since 1980, when is was granted self-operational rights, the company has increased year by year in terms of export volume, with its management improving and economic returns steadily rising. In 1995, its import and export volume hit US$119.展开更多
In feeder automation transformation there are difficulties in equipment and location selection.To help with this,an optimal layout model of feeder automation equipment oriented to the type of fault detection and local...In feeder automation transformation there are difficulties in equipment and location selection.To help with this,an optimal layout model of feeder automation equipment oriented to the type of fault detection and local action is pro-posed.It analyzes the coordination relationship of the three most common types of automation equipment,i.e.,fault indicator,over-current trip switch and non-voltage trip switch in the fault handling process,and the explicit expres-sions of power outage time caused by a fault on different layouts of the above three types of equipment are given.Given constraints of power supply reliability and the goal of minimizing the sum of equipment-related capital invest-ment and power interruption cost,a mixed-integer quadratic programming model for optimal layout is established,in which the functional failure probability of equipment is linearized using the 3δprinciple in statistics.Finally,the basic characteristics of the proposed model are illustrated by different scenarios on the IEEE RBTS-BUS6 system.It can not only take into account fault location and fault isolation to enhance user power consumption perception,but also can guide precise investment to improve the operational quality and efficiency of a power company.展开更多
Over the last two decades, construction contractors have been gradually making more investments in construction equipment to meet their needs associated with increasing volumes of construction projects. At present,fro...Over the last two decades, construction contractors have been gradually making more investments in construction equipment to meet their needs associated with increasing volumes of construction projects. At present,from an operational perspective, almost all contractors pay more attention to maintaining their equipment fleets in well-sustained workable conditions and having a high accessibility of the necessary equipment pieces. However,such an approach alone is not enough to maintain an efficient and sustainable business. In particular, for largescale construction companies that operate in multiple sites in the U.S. or overseas, the problem extends to an optimal allocation of available equipment. Given the current state of the construction industry in the U.S., this problem can be solved by geographically locating equipment pieces and then wisely re-allocating them among projects. Identifying equipment pieces geographically is a relatively easy task.The difficulty arises when informed decision-making is required for equipment allocation among job sites. The actual allocation of equipment should be both economically feasible and technologically preferable. To help in informed decision-making, an optimization model is developed as a mixed integer program. This model is formed based on a previously successfully developed decision-support model for construction equipment selection. The proposed model incorporates logical strategies of supply chain management to optimally select construction equipment for any construction site while taking into account the costs, availability, and transportation-relatedissues as constraints. The model benefits those responsible for informed decision-making for construction equipment selection and allocation. It also benefits the owners of construction companies, owing to its cost-minimization objective.展开更多
文摘Founded in 1978, the Zhejiang Machinery Equipment Import & Export Corporation is an industrial and trading company engaged in the import and export business of machinery, electronics and instruments. Since 1980, when is was granted self-operational rights, the company has increased year by year in terms of export volume, with its management improving and economic returns steadily rising. In 1995, its import and export volume hit US$119.
基金supported by the National Natural Science Foundation of China(Grant No.51777067).
文摘In feeder automation transformation there are difficulties in equipment and location selection.To help with this,an optimal layout model of feeder automation equipment oriented to the type of fault detection and local action is pro-posed.It analyzes the coordination relationship of the three most common types of automation equipment,i.e.,fault indicator,over-current trip switch and non-voltage trip switch in the fault handling process,and the explicit expres-sions of power outage time caused by a fault on different layouts of the above three types of equipment are given.Given constraints of power supply reliability and the goal of minimizing the sum of equipment-related capital invest-ment and power interruption cost,a mixed-integer quadratic programming model for optimal layout is established,in which the functional failure probability of equipment is linearized using the 3δprinciple in statistics.Finally,the basic characteristics of the proposed model are illustrated by different scenarios on the IEEE RBTS-BUS6 system.It can not only take into account fault location and fault isolation to enhance user power consumption perception,but also can guide precise investment to improve the operational quality and efficiency of a power company.
文摘Over the last two decades, construction contractors have been gradually making more investments in construction equipment to meet their needs associated with increasing volumes of construction projects. At present,from an operational perspective, almost all contractors pay more attention to maintaining their equipment fleets in well-sustained workable conditions and having a high accessibility of the necessary equipment pieces. However,such an approach alone is not enough to maintain an efficient and sustainable business. In particular, for largescale construction companies that operate in multiple sites in the U.S. or overseas, the problem extends to an optimal allocation of available equipment. Given the current state of the construction industry in the U.S., this problem can be solved by geographically locating equipment pieces and then wisely re-allocating them among projects. Identifying equipment pieces geographically is a relatively easy task.The difficulty arises when informed decision-making is required for equipment allocation among job sites. The actual allocation of equipment should be both economically feasible and technologically preferable. To help in informed decision-making, an optimization model is developed as a mixed integer program. This model is formed based on a previously successfully developed decision-support model for construction equipment selection. The proposed model incorporates logical strategies of supply chain management to optimally select construction equipment for any construction site while taking into account the costs, availability, and transportation-relatedissues as constraints. The model benefits those responsible for informed decision-making for construction equipment selection and allocation. It also benefits the owners of construction companies, owing to its cost-minimization objective.