To reduce the energy consumption of the LTE-A system,a distributed energy-saving mechanism based on Co MP(Co MPDESM) is proposed to solve the inadequate coverage problem under the dormant cells.First,the network is di...To reduce the energy consumption of the LTE-A system,a distributed energy-saving mechanism based on Co MP(Co MPDESM) is proposed to solve the inadequate coverage problem under the dormant cells.First,the network is divided into clusters based on the equivalent cell principle.Then,we transfer global optimization into a group of subproblems.Second,a joint processing-based cooperative cell selection model is constructed to determine cooperative cells and dormant cells.Third,the compensative cells with a determined threshold are selected to control users' access.Finally,a simulation is implemented in Matlab.Results show that the energy-saving rate can reach 36.4% and that the mechanism meets the network coverage requirement.Thus,joint processing can be effectively applied in an energy saving mechanism and used to improve the network performance of edge users without increasing transmission power.展开更多
A new modified conductivity model was established to predict the shear yield stress of electrorheological fluids (ERF). By using a cell equivalent method, the present model can deal with the face-center square structu...A new modified conductivity model was established to predict the shear yield stress of electrorheological fluids (ERF). By using a cell equivalent method, the present model can deal with the face-center square structure of ERF. Combining the scheme of the classical conductivity model for the single-chain structure, a new formula for the prediction of the shear yield stress of ERF was set up. The influences of the separation distance of the particles, the volume fraction of the particles and the applied electric field on the shear yield stress were investigated.展开更多
This paper focuses on the laminar flame instability of three high molecular weight n-alkanes,namely n-hexane,n-octane,and n-decane.The experiment was carried out in a constant volume combustion bomb to get the flame i...This paper focuses on the laminar flame instability of three high molecular weight n-alkanes,namely n-hexane,n-octane,and n-decane.The experiment was carried out in a constant volume combustion bomb to get the flame images.The critical radius under different conditions was extracted using the image processing program.Combined with the existing critical Peclet number theory,the dominant factors of flame instability under current conditions for three n-alkanes can be figured out.Moreover,the average cell size(equivalent cell radius,R_(cell))was extracted to provide quantitative analysis of the flame cellular structure,based on the method developed in this work.The theoretical R_(cell)were also calculated and compared with the experimental results to validate the proposed method.展开更多
The mechanical behavior of plain woven Carbon Fiber-Reinforced Polymer(CFRP)composites under Three-Point Bending(TPB)is investigated via experimental and numerical approaches.Multiscale models,including microscale,mes...The mechanical behavior of plain woven Carbon Fiber-Reinforced Polymer(CFRP)composites under Three-Point Bending(TPB)is investigated via experimental and numerical approaches.Multiscale models,including microscale,mesoscale and macroscale models,have been developed to characterize the TPB strength and damages.Thereinto,Representative Volume Elements(RVEs)of the microscale and mesoscale structures are established to determine the effective properties of carbon-fiber yarn and CFRP composites,respectively.Aimed at accurately and efficiently predicting the TPB behavior,an Equivalent Cross-Ply Laminate(ECPL)cell is proposed to simplify the inherent woven architecture,and the effective properties of the subcell are computed using a local homogenization approach.The macroscale model of the TPB specimen is constructed by a topology structure of ECPL cells to predict the mechanical behavior.The TPB experiments have been performed to validate the multiscale models.Both the experimental and numerical results reveal that delamination mainly appears in the top and bottom interfaces of the CFRP laminates.And matrix cracking and delamination are identified as the significant damage modes during the TPB process.Finally,the quasi-static and dynamic behaviors of plain woven composites are discussed by comparing the results of Low-Velocity Impact(LVI)and TPB simulations.展开更多
基金partially supported by the National Natural Science Foundation of China(61271187)the "863" Project (2014AA01A701)+2 种基金the Provincial Natural Science Foundation of China(20122BAB211039)the PAPD fundthe CICAEET fund
文摘To reduce the energy consumption of the LTE-A system,a distributed energy-saving mechanism based on Co MP(Co MPDESM) is proposed to solve the inadequate coverage problem under the dormant cells.First,the network is divided into clusters based on the equivalent cell principle.Then,we transfer global optimization into a group of subproblems.Second,a joint processing-based cooperative cell selection model is constructed to determine cooperative cells and dormant cells.Third,the compensative cells with a determined threshold are selected to control users' access.Finally,a simulation is implemented in Matlab.Results show that the energy-saving rate can reach 36.4% and that the mechanism meets the network coverage requirement.Thus,joint processing can be effectively applied in an energy saving mechanism and used to improve the network performance of edge users without increasing transmission power.
文摘A new modified conductivity model was established to predict the shear yield stress of electrorheological fluids (ERF). By using a cell equivalent method, the present model can deal with the face-center square structure of ERF. Combining the scheme of the classical conductivity model for the single-chain structure, a new formula for the prediction of the shear yield stress of ERF was set up. The influences of the separation distance of the particles, the volume fraction of the particles and the applied electric field on the shear yield stress were investigated.
基金supported by the National Natural Science Foundation of China(52106182,51888103)the National Science and Technology Major Project(2019-Ⅲ-0018-0062)+1 种基金supported by the State Key Laboratory of Clean Energy Utilization(Open Fund Project No.ZJUCEU2021016)Shaanxi Nature Science Foundation(No.2021JQ-265)。
文摘This paper focuses on the laminar flame instability of three high molecular weight n-alkanes,namely n-hexane,n-octane,and n-decane.The experiment was carried out in a constant volume combustion bomb to get the flame images.The critical radius under different conditions was extracted using the image processing program.Combined with the existing critical Peclet number theory,the dominant factors of flame instability under current conditions for three n-alkanes can be figured out.Moreover,the average cell size(equivalent cell radius,R_(cell))was extracted to provide quantitative analysis of the flame cellular structure,based on the method developed in this work.The theoretical R_(cell)were also calculated and compared with the experimental results to validate the proposed method.
基金financial supports from the National Natural Science Foundation of China (No. 52005451)the China Postdoctoral Science Foundation (No. 2022M712876)+1 种基金supported by the Joint Fund of Research and Development Program of Henan Province, China (No. 222301420033)the Foundation of Henan Center for Outstanding Overseas Scientists, China (No. GZS2021001)
文摘The mechanical behavior of plain woven Carbon Fiber-Reinforced Polymer(CFRP)composites under Three-Point Bending(TPB)is investigated via experimental and numerical approaches.Multiscale models,including microscale,mesoscale and macroscale models,have been developed to characterize the TPB strength and damages.Thereinto,Representative Volume Elements(RVEs)of the microscale and mesoscale structures are established to determine the effective properties of carbon-fiber yarn and CFRP composites,respectively.Aimed at accurately and efficiently predicting the TPB behavior,an Equivalent Cross-Ply Laminate(ECPL)cell is proposed to simplify the inherent woven architecture,and the effective properties of the subcell are computed using a local homogenization approach.The macroscale model of the TPB specimen is constructed by a topology structure of ECPL cells to predict the mechanical behavior.The TPB experiments have been performed to validate the multiscale models.Both the experimental and numerical results reveal that delamination mainly appears in the top and bottom interfaces of the CFRP laminates.And matrix cracking and delamination are identified as the significant damage modes during the TPB process.Finally,the quasi-static and dynamic behaviors of plain woven composites are discussed by comparing the results of Low-Velocity Impact(LVI)and TPB simulations.