期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Mechanical and Electrical Properties of Y-containing Al-Zr Heat-resistant Alloy Produced by Dynamic ECAE Process
1
作者 周天国 谢海波 姜正义 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第1期123-129,共7页
The influence of rare earth Y on the microstructure and mechanical properties of Al-Zr alloy produced by dynamic ECAE was studied by OLYMPUS-BX51M optical microscope(OM),S4800 energy disperse spectroscopy(EDS)and SANS... The influence of rare earth Y on the microstructure and mechanical properties of Al-Zr alloy produced by dynamic ECAE was studied by OLYMPUS-BX51M optical microscope(OM),S4800 energy disperse spectroscopy(EDS)and SANS CMT5105 electronic universal material testing machine,and the corresponding equivalent conductivity was also investigated by using QJ48 DC electric bridge.The results show that the tensile strength of Al-Zr conductor first increases and then decreases with the increase of the aging time and temperature,and the highest tensile value can be obtained under the aging temperature of 160°C for 4 h.The ductility and the resistivity of the Al-Zr alloy have inverse proportion to the aging time.The rare earth Y has significantly improved the electrical and mechanical properties of Al-0.3%Zr heat-resistant alloy.In this study,the tensile strength and the elongation of the Al-0.3%Zr-0.2%Y alloy,after aging treatment at 220°C for 14 h,are about 278.49 MPa and 6.7%,respectively,and the equivalent conductivity is about 59.6 IACS.Hence the synthetical properties of the Y-containing alloy are significantly improved compared with traditional Al-0.3%Zr alloy. 展开更多
关键词 Al-Zr heat-resistant alloy ECAE process equivalent conductivity aging treatment
下载PDF
Numerical simulation of a buried hot crude oil pipeline during shutdown 被引量:6
2
作者 Xu Cheng Yu Bo +3 位作者 Zhang Zhengwei Zhang Jinjun Wei Jinjia Sun Shuyu 《Petroleum Science》 SCIE CAS CSCD 2010年第1期73-82,共10页
In this paper a mathematical model is built for a buried hot crude oil pipeline during shutdown, and an unstructured grid and polar coordinate grid are respectively applied to generating grids for the soil region and ... In this paper a mathematical model is built for a buried hot crude oil pipeline during shutdown, and an unstructured grid and polar coordinate grid are respectively applied to generating grids for the soil region and the three layers in the pipe (wax layer, pipe wall, and corrosion-inhibiting coating). The governing equations are discretized using the finite volume method. The variations in temperatures of static oil and soil were investigated during pipeline shutdown in both summer and winter, in which some important parameters of the soil and crude oils of a Northeast pipeline are employed. 展开更多
关键词 Moving boundary stagnation point equivalent thermal conductivity thermal influence region unstructured grid
下载PDF
Characterization of size effect of natural convection in melting process of phase change material in square cavity 被引量:3
3
作者 曹世豪 王辉 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第10期400-409,共10页
The accelerating effect of natural convection on the melting of phase change material(PCM)has been extensively demonstrated.However,such an influence is directly dependent on the size and shape of domain in which phas... The accelerating effect of natural convection on the melting of phase change material(PCM)has been extensively demonstrated.However,such an influence is directly dependent on the size and shape of domain in which phase change happens,and how to quantitatively describe such an influence is still challenging.On the other hand,the simulation of natural convection process is considerably difficult,involving complex fluid flow in a region changing with time,and is typically not operable in practice.To overcome these obstacles,the present study aims to quantitatively investigate the size effect of natural convection in the melting process of PCM paraffin filled in a square latent heat storage system through experiment and simulation,and ultimately a correlation equation to represent its contribution is proposed.Firstly,the paraffin melting experiment is conducted to validate the two-dimensional finite element model based on the enthalpy method.Subsequently,a comprehensive investigation is performed numerically for various domain sizes.The results show that the melting behavior of paraffin is dominated by the thermal convection.When the melting time exceeds 50 s,a whirlpoor flow caused by natural convection appears in the upper liquid phase region close to the heating wall,and then its influencing range gradually increases to accelerate the melting of paraffin.However,its intensity gradually decreases as the distance between the melting front and the heating wall increases.Besides,it is found that the correlation between the total melting time and the domain size approximately exhibits a power law.When the domain size is less than 2 mm,the accelerating effect of natural convection becomes very weak and can be ignored in practice.Moreover,in order to simplify the complex calculation of natural convection,the equivalent thermal conductivity concept is proposed to include the contribution of natural convection to the total melting time,and an empirical correlation is given for engineering applications. 展开更多
关键词 phase change material natural convection size effect equivalent thermal conductivity
下载PDF
SIMULATION OF STEEL COIL HEAT TRANSFER IN HPH FURNACE 被引量:3
4
作者 M. Y. Gu G. Chen +1 位作者 M. C. Zhang X. C. Dai 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第5期647-652,共6页
The mathematical model has been estublished for the simulation of steel coil's heat transfer during annealing thermal process in HPH (high performance hydrogen) furnace. The equivalent radial thermal conductivity i... The mathematical model has been estublished for the simulation of steel coil's heat transfer during annealing thermal process in HPH (high performance hydrogen) furnace. The equivalent radial thermal conductivity is adopted by statistical analysis regression approach through the combination of a large quantity of production data collected in practice and theoretical analyses. The effect of the number of coils on circulating flow gas is considered for calculating the convection heat transfer coefficient, The temperature within the coil is predicted with the developed model during the annealing cycle including heating process and cooling process. The good consistently between the predicted results and the experimental data has demonstrated that the mathematical model established and the parameters identified by this paper are scientifically feasible and the effective method of calculation for coil equivalent radial heat transfer coefficient and circulating gas flow has been identified successfully, which largely enhances the operability and feasibility of the mathematic- model. This model provides a theoretical basis and an effective means to conduct studies on the impact that foresaid factors may imposed on the steel coil's temperature field, to analyze the stress within coils, to realize online control and optimal production and to increase facilily output by increasing heating and cooling rates of coils without producing higher thermal stress. 展开更多
关键词 FURNACE equivalent radial thermal conductivity convection heat transfer coefficient SIMULATION
下载PDF
Prediction of Equivalent Thermal Conduction Resistance of Printed Circuit Heat Exchangers
5
作者 SHI Haoning CHANG Hongliang +1 位作者 MA Ting WANG Qiuwang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第6期2281-2292,共12页
Printed circuit heat exchangers(PCHEs) have great potential to be employed in the advanced nuclear reactor systems. In this work, the equivalent thermal conduction resistance of PCHE is studied. The influences of ther... Printed circuit heat exchangers(PCHEs) have great potential to be employed in the advanced nuclear reactor systems. In this work, the equivalent thermal conduction resistance of PCHE is studied. The influences of thermal convection resistance are analyzed. The results indicate that the equivalent thermal conduction resistance of PCHEs with unequal numbers of hot plates and cold plates are sensitive to the thermal convection resistance of hot side and cold side. Specifically, for case C which has unequal number of hot and cold channels, the maximum value of equivalent thermal conduction resistance can be 1.7-2.4 times the minimum value. The equivalent thermal conduction resistance is underestimated under the isothermal boundary. In addition, the non-uniformity of the lengths of all the heat flux lines determines the influence degree of thermal convection resistance on the equivalent thermal conduction resistance. For further investigation, Latin hypercube sampling method is adopted to generate a large number of design points for each PCHE configuration. Based on the sample data, mathematical correlations and artificial neural network(ANN) for prediction of equivalent thermal conduction resistance for each case are developed. The proposed correlations of equivalent thermal conduction resistance for each case have acceptable accuracy of prediction with a wide range covering general engineering applications. The ANN model can achieve much better prediction accuracy than the proposed correlations thus it is recommended in the cases that the prediction accuracy is considered as the priority need. 展开更多
关键词 equivalent thermal conduction resistance printed circuit heat exchanger numerical calculation CORRELATIONS artificial neural network
原文传递
Thermal Resistance Simulation for CoF Packages
6
作者 Chuan Chen Qian Wang +4 位作者 Xiaotian Meng Lin Tan Jian Wang Chengqiang Cui Jian Cai 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2015年第3期277-284,共8页
Chip-on-Film (CoF) is a packaging technology that mounts Integrated Circuits (IC) chips directly on a flexible substrate surface. As both power and the number of pins in such packages increase, thermal conditions ... Chip-on-Film (CoF) is a packaging technology that mounts Integrated Circuits (IC) chips directly on a flexible substrate surface. As both power and the number of pins in such packages increase, thermal conditions become more important. In this paper, the thermal resistance of CoF packages is studied using Ansys software to perform finite-element analysis. Because of circuit complexity, two equivalent methods-a length-weighted method and an image-recognition method--are proposed in place of an accurate model to get equivalent thermal conductivity of CoF package devices. In our experiments, the simulated value of thermal resistance based on the length-weighted method was 1.653 K/W, and the value based on the image-recognition method was 1.911 K/W. The real thermal resistance value of the CoF package device is 1.812 K/W. So the error between the real value measured by a tester and the simulated value based on the length-weighted method is 8.8%, and the error between the real value and the simulated value based on the image-recognition method is 5.5%. Hence, both methods can provide effective simulation results, and the image-recognition method is more accurate. In addition, we optimized the CoF package structure. From the simulation results, the drop in thermal resistance after the optimization is obvious. 展开更多
关键词 Chip-on-Film (CoF) finite element analysis equivalent thermal conductivity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部