Important challenges must be addressed to make wind turbines sustainable renewable energy sources.A typical problem concerns the design of the foundation.If the pile diameter is larger than that of the jacket platform...Important challenges must be addressed to make wind turbines sustainable renewable energy sources.A typical problem concerns the design of the foundation.If the pile diameter is larger than that of the jacket platform,traditional mechanical models cannot be used.In this study,relying on the seabed soil data of an offshore wind farm,the m-method and the equivalent embedded method are used to address the single-pile wind turbine foundation problem for different pile diameters.An approach to determine the equivalent pile length is also proposed accordingly.The results provide evidence for the effectiveness and reliability of the model based on the equivalent embedded method.展开更多
The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident...The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident wave into equivalent loads on the cutoff boundaries. The wave method has high precision, but the implementation is complicated, especially for three-dimensional models. By deducing another form of equivalent input seismic loads in the fi nite element model, a new seismic wave input method is proposed. In the new method, by imposing the displacements of the free wave fi eld on the nodes of the substructure composed of elements that contain artifi cial boundaries, the equivalent input seismic loads are obtained through dynamic analysis of the substructure. Subsequently, the equivalent input seismic loads are imposed on the artifi cial boundary nodes to complete the seismic wave input and perform seismic analysis of the soil-structure dynamic interaction model. Compared with the wave method, the new method is simplifi ed by avoiding the complex processes of calculating the equivalent input seismic loads. The validity of the new method is verifi ed by the dynamic analysis numerical examples of the homogeneous and layered half space under vertical and oblique incident seismic waves.展开更多
The existing equivalent methods usually only deal with static load models and neglect the dynamic characteristics of loads such as induction motors.This paper presents a dynamic equivalent method which considers motor...The existing equivalent methods usually only deal with static load models and neglect the dynamic characteristics of loads such as induction motors.This paper presents a dynamic equivalent method which considers motor dynamics.At first,the clustering criterion of motor loads is given.The motors with similar dynamic characteristics are classified into one group.Then,reduction of motors in the same group is carried out.Finally,parameters of the equivalent motor are calculated and the equivalent system is thus obtained.This aggregation method is applied to the New England system of 39-buses and 10-generators.Simulation results show that the equivalent system retains the dynamic performance of the original system with good accuracy.Compared with the 1-motor equivalent scheme,the 2-motor equivalent scheme can improve equivalent precision effectively.展开更多
针对风电机组出力的间歇性和波动性,提出了基于等效电量频率法(equiva1ent energy and frequency function method,EEFF)的电力系统随机生产模拟方法。将等效电量函数法(equiva1ent energy function method,EEF)与频率持续法(frequency ...针对风电机组出力的间歇性和波动性,提出了基于等效电量频率法(equiva1ent energy and frequency function method,EEFF)的电力系统随机生产模拟方法。将等效电量函数法(equiva1ent energy function method,EEF)与频率持续法(frequency and duration,FD)相结合,用来评估风电场接入对电力系统生产运行的影响。该方法在生产模拟中保留了负荷和风电机组的时变特性,除了可以得到常规算法所能得到的生产模拟结果外,还可以评估风电场对常规机组造成的开停机影响,以及与火电机组开机、暖机等因素相关的动态费用。EPRI36机组随机生产模拟结果验证了所提方法的正确性和有效性。展开更多
基金supported by the National Natural Science Foundation of China (52071055)the Fundamental Research Funds for the Central Universities (Grant No.DUT22QN237).
文摘Important challenges must be addressed to make wind turbines sustainable renewable energy sources.A typical problem concerns the design of the foundation.If the pile diameter is larger than that of the jacket platform,traditional mechanical models cannot be used.In this study,relying on the seabed soil data of an offshore wind farm,the m-method and the equivalent embedded method are used to address the single-pile wind turbine foundation problem for different pile diameters.An approach to determine the equivalent pile length is also proposed accordingly.The results provide evidence for the effectiveness and reliability of the model based on the equivalent embedded method.
基金National Natural Science Foundation of China under Grant No.51478247National Key Research and Development Program of China under Grant No.2016YFC1402800
文摘The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident wave into equivalent loads on the cutoff boundaries. The wave method has high precision, but the implementation is complicated, especially for three-dimensional models. By deducing another form of equivalent input seismic loads in the fi nite element model, a new seismic wave input method is proposed. In the new method, by imposing the displacements of the free wave fi eld on the nodes of the substructure composed of elements that contain artifi cial boundaries, the equivalent input seismic loads are obtained through dynamic analysis of the substructure. Subsequently, the equivalent input seismic loads are imposed on the artifi cial boundary nodes to complete the seismic wave input and perform seismic analysis of the soil-structure dynamic interaction model. Compared with the wave method, the new method is simplifi ed by avoiding the complex processes of calculating the equivalent input seismic loads. The validity of the new method is verifi ed by the dynamic analysis numerical examples of the homogeneous and layered half space under vertical and oblique incident seismic waves.
基金supported by the National Scientific Funds for Outstanding Young Scientists of China (Grant No 50725723)National Natural Science Foundation of China (Grant No 50977021)
文摘The existing equivalent methods usually only deal with static load models and neglect the dynamic characteristics of loads such as induction motors.This paper presents a dynamic equivalent method which considers motor dynamics.At first,the clustering criterion of motor loads is given.The motors with similar dynamic characteristics are classified into one group.Then,reduction of motors in the same group is carried out.Finally,parameters of the equivalent motor are calculated and the equivalent system is thus obtained.This aggregation method is applied to the New England system of 39-buses and 10-generators.Simulation results show that the equivalent system retains the dynamic performance of the original system with good accuracy.Compared with the 1-motor equivalent scheme,the 2-motor equivalent scheme can improve equivalent precision effectively.
文摘针对风电机组出力的间歇性和波动性,提出了基于等效电量频率法(equiva1ent energy and frequency function method,EEFF)的电力系统随机生产模拟方法。将等效电量函数法(equiva1ent energy function method,EEF)与频率持续法(frequency and duration,FD)相结合,用来评估风电场接入对电力系统生产运行的影响。该方法在生产模拟中保留了负荷和风电机组的时变特性,除了可以得到常规算法所能得到的生产模拟结果外,还可以评估风电场对常规机组造成的开停机影响,以及与火电机组开机、暖机等因素相关的动态费用。EPRI36机组随机生产模拟结果验证了所提方法的正确性和有效性。