Based on the equivalent circuit model of a two-port optical receiver front-end,the relationship between the equivalent input noise current spectral density and the noise figure is analyzed. The derived relationship ha...Based on the equivalent circuit model of a two-port optical receiver front-end,the relationship between the equivalent input noise current spectral density and the noise figure is analyzed. The derived relationship has universal validity for determining the equivalent input noise current spectral density for optical receiver designs, as verified by measuring a 155Mb/s high-impedance optical receiver front.end. Good agreement between calculated and simulated results has been achieved.展开更多
Active disturbance-rejection methods are effective in estimating and rejecting disturbances in both transient and steady-state responses.This paper presents a deep observation on and a comparison between two of those ...Active disturbance-rejection methods are effective in estimating and rejecting disturbances in both transient and steady-state responses.This paper presents a deep observation on and a comparison between two of those methods:the generalized extended-state observer(GESO)and the equivalent input disturbance(EID)from assumptions,system configurations,stability conditions,system design,disturbance-rejection performance,and extensibility.A time-domain index is introduced to assess the disturbance-rejection performance.A detailed observation of disturbance-suppression mechanisms reveals the superiority of the EID approach over the GESO method.A comparison between these two methods shows that assumptions on disturbances are more practical and the adjustment of disturbance-rejection performance is easier for the EID approach than for the GESO method.展开更多
In the present paper the analytical formulas for calculating the equivalent deterministic transients for multivariable cross correlated random processes are developed.The formulas permit the determination of the Root-...In the present paper the analytical formulas for calculating the equivalent deterministic transients for multivariable cross correlated random processes are developed.The formulas permit the determination of the Root-mean-square of the responses of a linear time-invariant system to stationary multiple random inputs in the time domain.The method is applicable in the study of flight of airplanes in atmospheric turbulence and is also useful for general engineering applications of stochastc processes control.展开更多
A required finite element method(FEM) model applicable for narrow gap CMT and CMT+P MIX welding was established based on the interactions between arc,base metal and filler metal.A novel method of simplifying wire f...A required finite element method(FEM) model applicable for narrow gap CMT and CMT+P MIX welding was established based on the interactions between arc,base metal and filler metal.A novel method of simplifying wire feeding pulses and heat input pulses was supposed under the conduction of equivalent input.The method together with composed double-ellipse heat sources was included in the model.The model was employed in the investigation of thermal cycling and the identification of the softened zone of AA7A52 base plates.Low-frequency behavior emerged in the form of low-cooling rate sects,which were not expected under experimental conditions.The softened zone including the quenched zone and averaging zone of the base plate was much wider internal the base plate than that close to the surfaces.The reliability of the predictions in thermal cycling was supported by infrared imaging test results of the thermal cycle process.展开更多
In this paper, we present a design method based on the concept of equivalent input disturbance (EID) to reject disturbances for a linear time-invariant system. A generalized state observer (GSO) is used to estimat...In this paper, we present a design method based on the concept of equivalent input disturbance (EID) to reject disturbances for a linear time-invariant system. A generalized state observer (GSO) is used to estimate an EID of the external disturbances, and the pole-assignment algorithm is employed to select the matrices of the GSO. Simulation and experimental results of a rotational speed control system demonstrate the validity of our method.展开更多
This paper presents an adaptive equivalent-input-disturbance(AEID)approach that contains a new adjustable gain to improve disturbance-rejection performance.A linear matrix inequality is derived to design the parameter...This paper presents an adaptive equivalent-input-disturbance(AEID)approach that contains a new adjustable gain to improve disturbance-rejection performance.A linear matrix inequality is derived to design the parameters of a control system.An adaptive law for the adjustable gain is presented based on the combination of the root locus method and Lyapunov stability theory to guarantee the stability of the AEID-based system.The adjustable gain is limited in an allowable range and the information for adjusting is obtained from the state of the system.Simulation results show that the method is effective and robust.A comparison with the conventional EID approach demonstrates the validity and superiority of the method.展开更多
In this paper, an auxiliary-model method is proposed for calculating equivalent input seismic loads in research of ground motions. This method can be used to investigate the local effect of 3 D complex sites subjected...In this paper, an auxiliary-model method is proposed for calculating equivalent input seismic loads in research of ground motions. This method can be used to investigate the local effect of 3 D complex sites subjected to obliquely incident SV and P waves. Using this method, we build a fictitious auxiliary model along the normal direction of the boundary of the area of interest, with the model’s localized geological features remaining the same along a vector normal to this boundary. This model is divided into five independent auxiliary models, which are then dynamically analyzed to obtain the equivalent input seismic loads. Unlike traditional methods, in this new technique, the mechanical behavior of the auxiliary model can be nonlinear, and its geometry can be arbitrary. In addition, a detailed description of the steps to calculate the equivalent input seismic loads is given. Numerical examples of incident plane-wave propagation at uniform sites with local features validate the effectiveness of this method. It is also applicable to elastic and non-elastic problems.展开更多
文摘Based on the equivalent circuit model of a two-port optical receiver front-end,the relationship between the equivalent input noise current spectral density and the noise figure is analyzed. The derived relationship has universal validity for determining the equivalent input noise current spectral density for optical receiver designs, as verified by measuring a 155Mb/s high-impedance optical receiver front.end. Good agreement between calculated and simulated results has been achieved.
基金This work was supported in part by the JSPS(Japan Society for the Promotion of Science)KAKENHI(20H04566,22H03998)the National Natural Science Foundation of China(61873348)+1 种基金the Natural Science Foundation of Hubei Province,China(2020CFA031)Wuhan Applied Foundational Frontier Project(2020010601012175).
文摘Active disturbance-rejection methods are effective in estimating and rejecting disturbances in both transient and steady-state responses.This paper presents a deep observation on and a comparison between two of those methods:the generalized extended-state observer(GESO)and the equivalent input disturbance(EID)from assumptions,system configurations,stability conditions,system design,disturbance-rejection performance,and extensibility.A time-domain index is introduced to assess the disturbance-rejection performance.A detailed observation of disturbance-suppression mechanisms reveals the superiority of the EID approach over the GESO method.A comparison between these two methods shows that assumptions on disturbances are more practical and the adjustment of disturbance-rejection performance is easier for the EID approach than for the GESO method.
文摘In the present paper the analytical formulas for calculating the equivalent deterministic transients for multivariable cross correlated random processes are developed.The formulas permit the determination of the Root-mean-square of the responses of a linear time-invariant system to stationary multiple random inputs in the time domain.The method is applicable in the study of flight of airplanes in atmospheric turbulence and is also useful for general engineering applications of stochastc processes control.
基金Project (9140C850205120C8501) supported by the Major Program of National Key Laboratory of Remanufacturing and the Army Foundation Project of China
文摘A required finite element method(FEM) model applicable for narrow gap CMT and CMT+P MIX welding was established based on the interactions between arc,base metal and filler metal.A novel method of simplifying wire feeding pulses and heat input pulses was supposed under the conduction of equivalent input.The method together with composed double-ellipse heat sources was included in the model.The model was employed in the investigation of thermal cycling and the identification of the softened zone of AA7A52 base plates.Low-frequency behavior emerged in the form of low-cooling rate sects,which were not expected under experimental conditions.The softened zone including the quenched zone and averaging zone of the base plate was much wider internal the base plate than that close to the surfaces.The reliability of the predictions in thermal cycling was supported by infrared imaging test results of the thermal cycle process.
基金supported by the National Natural Science Foundation of China (Nos. 61210011, 60974045, 61125301)
文摘In this paper, we present a design method based on the concept of equivalent input disturbance (EID) to reject disturbances for a linear time-invariant system. A generalized state observer (GSO) is used to estimate an EID of the external disturbances, and the pole-assignment algorithm is employed to select the matrices of the GSO. Simulation and experimental results of a rotational speed control system demonstrate the validity of our method.
基金This work was supported by National Natural Science Foundation of China(No.61873348)National Key R&D Program of China(No.2017YFB1300900)+1 种基金Hubei Provincial Natural Science Foundation of China(No.2015CFA010)the 111 Project,China(No.B17040).
文摘This paper presents an adaptive equivalent-input-disturbance(AEID)approach that contains a new adjustable gain to improve disturbance-rejection performance.A linear matrix inequality is derived to design the parameters of a control system.An adaptive law for the adjustable gain is presented based on the combination of the root locus method and Lyapunov stability theory to guarantee the stability of the AEID-based system.The adjustable gain is limited in an allowable range and the information for adjusting is obtained from the state of the system.Simulation results show that the method is effective and robust.A comparison with the conventional EID approach demonstrates the validity and superiority of the method.
基金This study was supported by the Basic Scientific and Research Fund from National Institute of Natural Hazards,Ministry of Emergency Management of China(former Institute of Crustal Dynamics,China Earthquake Administration)(No.ZDJ2019-25)the National Key Research and Development Program of China(No.2018YFC1504703)。
文摘In this paper, an auxiliary-model method is proposed for calculating equivalent input seismic loads in research of ground motions. This method can be used to investigate the local effect of 3 D complex sites subjected to obliquely incident SV and P waves. Using this method, we build a fictitious auxiliary model along the normal direction of the boundary of the area of interest, with the model’s localized geological features remaining the same along a vector normal to this boundary. This model is divided into five independent auxiliary models, which are then dynamically analyzed to obtain the equivalent input seismic loads. Unlike traditional methods, in this new technique, the mechanical behavior of the auxiliary model can be nonlinear, and its geometry can be arbitrary. In addition, a detailed description of the steps to calculate the equivalent input seismic loads is given. Numerical examples of incident plane-wave propagation at uniform sites with local features validate the effectiveness of this method. It is also applicable to elastic and non-elastic problems.