An efficient approach is proposed for the equivalent linearization of frame structures with plastic hinges under nonstationary seismic excitations.The concentrated plastic hinges,described by the Bouc-Wen model,are as...An efficient approach is proposed for the equivalent linearization of frame structures with plastic hinges under nonstationary seismic excitations.The concentrated plastic hinges,described by the Bouc-Wen model,are assumed to occur at the two ends of a linear-elastic beam element.The auxiliary differential equations governing the plastic rotational displacements and their corresponding hysteretic displacements are replaced with linearized differential equations.Then,the two sets of equations of motion for the original nonlinear system can be reduced to an expanded-order equivalent linearized equation of motion for equivalent linear systems.To solve the equation of motion for equivalent linear systems,the nonstationary random vibration analysis is carried out based on the explicit time-domain method with high efficiency.Finally,the proposed treatment method for initial values of equivalent parameters is investigated in conjunction with parallel computing technology,which provides a new way of obtaining the equivalent linear systems at different time instants.Based on the explicit time-domain method,the key responses of interest of the converged equivalent linear system can be calculated through dimension reduction analysis with high efficiency.Numerical examples indicate that the proposed approach has high computational efficiency,and shows good applicability to weak nonlinear and medium-intensity nonlinear systems.展开更多
The stationary random responses of nonlinear shear-typeMulti-Degrees-of-Freedom (MDOF) hysteretic system are analyzed byusing the Pseudo Excitation Method (PEM) combined with the EquivalentLinerization Method (ELM). T...The stationary random responses of nonlinear shear-typeMulti-Degrees-of-Freedom (MDOF) hysteretic system are analyzed byusing the Pseudo Excitation Method (PEM) combined with the EquivalentLinerization Method (ELM). The solution of the equivalent linearsystem is obtained by iteratively solving complex algebraic equationsinstead of the Lyapunov equations. The efficiency of this method ismuch higher For practical engineering systems with manydegrees-of-freedom.展开更多
The characteristics of linear transformer are studied analytically. The transformer is composed in one of modes of linear motor-transformer apparatus proposed for future wireless light rail vehicle (LRV). The secondar...The characteristics of linear transformer are studied analytically. The transformer is composed in one of modes of linear motor-transformer apparatus proposed for future wireless light rail vehicle (LRV). The secondary (onboard) power factor can be adjusted at any value by an onboard converter. The equivalent circuit is used to study the transferred power control. The parameters are determined by three-dimensional finite element method (FEM) analysis for one pole-pair model. Under the rated primary (input) and secondary voltage and current, which are specified for linear motor operation, the characteristics of the secondary power factor are cleared. It is also shown that the input capacitor can improve the primary power factor and decrease the input power capacity, but does not change the efficiency. This linear transformer has the efficiency of 91% and the input power factor of 0.87 when the apparatus without input capacitor is controlled at the secondary power factor of 0.4.展开更多
An engineering system may consist of several different types of components,belonging to such physical"domains"as mechanical,electrical,fluid,and thermal.It is termed a multi-domain(or multi-physics)system.Th...An engineering system may consist of several different types of components,belonging to such physical"domains"as mechanical,electrical,fluid,and thermal.It is termed a multi-domain(or multi-physics)system.The present paper concerns the use of linear graphs(LGs)to generate a minimal model for a multi-physics system.A state-space model has to be a minimal realization.Specifically,the number of state variables in the model should be the minimum number that can completely represent the dynamic state of the system.This choice is not straightforward.Initially,state variables are assigned to all the energy-storage elements of the system.However,some of the energy storage elements may not be independent,and then some of the chosen state variables will be redundant.An approach is presented in the paper,with illustrative examples in the mixed fluid-mechanical domains,to illustrate a way to recognize dependent energy storage elements and thereby obtain a minimal state-space model.System analysis in the frequency domain is known to be more convenient than in the time domain,mainly because the relevant operations are algebraic rather than differential.For achieving this objective,the state space model has to be converted into a transfer function.The direct way is to first convert the state-space model into the input-output differential equation,and then substitute the time derivative by the Laplace variable.This approach is shown in the paper.The same result can be obtained through the transfer function linear graph(TF LG)of the system.In a multi-physics system,first the physical domains have to be converted into an equivalent single domain(preferably,the output domain of the system),when using the method of TFLG.This procedure is illustrated as well,in the present paper.展开更多
Equivalent stochastic linearization (ESL) for nonlinear uncertain structure under stationary stochastic excitation is presented. There are two parts of difference between the original system and equivalent system: ...Equivalent stochastic linearization (ESL) for nonlinear uncertain structure under stationary stochastic excitation is presented. There are two parts of difference between the original system and equivalent system: one is caused by the difference between the means of original and equivalent stochastic structure; and another is caused by the difference between the original and equivalent stochastic structure which has the relation with stochastic variables. Statistical characteristics of equivalent stochastic structure can be obtained in accordance with mean square criterion, so nonlinear stochastic structure is transformed into linear stochastic structure. In order to attain that objective, the compound response spectrum of linear stochastic structure under stationary random excitation which is used in the solution is derived in the case of the mutual independence between stochastic excitation and stochastic structure. Finally, the example shows the accuracy and validity of the proposed method.展开更多
基金Fundamental Research Funds for the Central Universities under Grant No.2682022CX072the Research and Development Plan in Key Areas of Guangdong Province under Grant No.2020B0202010008。
文摘An efficient approach is proposed for the equivalent linearization of frame structures with plastic hinges under nonstationary seismic excitations.The concentrated plastic hinges,described by the Bouc-Wen model,are assumed to occur at the two ends of a linear-elastic beam element.The auxiliary differential equations governing the plastic rotational displacements and their corresponding hysteretic displacements are replaced with linearized differential equations.Then,the two sets of equations of motion for the original nonlinear system can be reduced to an expanded-order equivalent linearized equation of motion for equivalent linear systems.To solve the equation of motion for equivalent linear systems,the nonstationary random vibration analysis is carried out based on the explicit time-domain method with high efficiency.Finally,the proposed treatment method for initial values of equivalent parameters is investigated in conjunction with parallel computing technology,which provides a new way of obtaining the equivalent linear systems at different time instants.Based on the explicit time-domain method,the key responses of interest of the converged equivalent linear system can be calculated through dimension reduction analysis with high efficiency.Numerical examples indicate that the proposed approach has high computational efficiency,and shows good applicability to weak nonlinear and medium-intensity nonlinear systems.
基金NNSFC(Project No.19772009)NKBRSF fund(No. G1999032805)Doctoral Funding of State Education Ministry(No.97014120)
文摘The stationary random responses of nonlinear shear-typeMulti-Degrees-of-Freedom (MDOF) hysteretic system are analyzed byusing the Pseudo Excitation Method (PEM) combined with the EquivalentLinerization Method (ELM). The solution of the equivalent linearsystem is obtained by iteratively solving complex algebraic equationsinstead of the Lyapunov equations. The efficiency of this method ismuch higher For practical engineering systems with manydegrees-of-freedom.
文摘The characteristics of linear transformer are studied analytically. The transformer is composed in one of modes of linear motor-transformer apparatus proposed for future wireless light rail vehicle (LRV). The secondary (onboard) power factor can be adjusted at any value by an onboard converter. The equivalent circuit is used to study the transferred power control. The parameters are determined by three-dimensional finite element method (FEM) analysis for one pole-pair model. Under the rated primary (input) and secondary voltage and current, which are specified for linear motor operation, the characteristics of the secondary power factor are cleared. It is also shown that the input capacitor can improve the primary power factor and decrease the input power capacity, but does not change the efficiency. This linear transformer has the efficiency of 91% and the input power factor of 0.87 when the apparatus without input capacitor is controlled at the secondary power factor of 0.4.
基金supported by research grants from the Natural Sciences and Engineering Research Council(NSERC)of Canada
文摘An engineering system may consist of several different types of components,belonging to such physical"domains"as mechanical,electrical,fluid,and thermal.It is termed a multi-domain(or multi-physics)system.The present paper concerns the use of linear graphs(LGs)to generate a minimal model for a multi-physics system.A state-space model has to be a minimal realization.Specifically,the number of state variables in the model should be the minimum number that can completely represent the dynamic state of the system.This choice is not straightforward.Initially,state variables are assigned to all the energy-storage elements of the system.However,some of the energy storage elements may not be independent,and then some of the chosen state variables will be redundant.An approach is presented in the paper,with illustrative examples in the mixed fluid-mechanical domains,to illustrate a way to recognize dependent energy storage elements and thereby obtain a minimal state-space model.System analysis in the frequency domain is known to be more convenient than in the time domain,mainly because the relevant operations are algebraic rather than differential.For achieving this objective,the state space model has to be converted into a transfer function.The direct way is to first convert the state-space model into the input-output differential equation,and then substitute the time derivative by the Laplace variable.This approach is shown in the paper.The same result can be obtained through the transfer function linear graph(TF LG)of the system.In a multi-physics system,first the physical domains have to be converted into an equivalent single domain(preferably,the output domain of the system),when using the method of TFLG.This procedure is illustrated as well,in the present paper.
文摘Equivalent stochastic linearization (ESL) for nonlinear uncertain structure under stationary stochastic excitation is presented. There are two parts of difference between the original system and equivalent system: one is caused by the difference between the means of original and equivalent stochastic structure; and another is caused by the difference between the original and equivalent stochastic structure which has the relation with stochastic variables. Statistical characteristics of equivalent stochastic structure can be obtained in accordance with mean square criterion, so nonlinear stochastic structure is transformed into linear stochastic structure. In order to attain that objective, the compound response spectrum of linear stochastic structure under stationary random excitation which is used in the solution is derived in the case of the mutual independence between stochastic excitation and stochastic structure. Finally, the example shows the accuracy and validity of the proposed method.