Low-field nuclear magnetic resonance magnet(2 MHz) is required for rock core analysis. However, due to its low field strength, it is hard to achieve a high uniform B0 field only by using the passive shimming. Theref...Low-field nuclear magnetic resonance magnet(2 MHz) is required for rock core analysis. However, due to its low field strength, it is hard to achieve a high uniform B0 field only by using the passive shimming. Therefore, active shimming is necessarily used to further improve uniformity for Halbach magnet. In this work, an equivalent magnetic dipole method is presented for designing shim coils. The minimization of the coil power dissipation is considered as an optimal object to minimize coil heating effect, and the deviation from the target field is selected as a penalty function term. The lsqnonlin optimization toolbox of MATLAB is used to solve the optimization problem. Eight shim coils are obtained in accordance with the contour of the stream function. We simulate each shim coil by ANSYS Maxwell software to verify the validity of the designed coils. Measurement results of the field distribution of these coils are consistent with those of the target fields.The uniformity of the B0 field is improved from 114.2 ppm to 26.9 ppm after using these shim coils.展开更多
The conventional magnetic resonance imaging(MRI)equipment cannot measure large volume samples nondestructively in the engineering site for its heavy weight and closed structure.In order to realize the mobile MRI,this ...The conventional magnetic resonance imaging(MRI)equipment cannot measure large volume samples nondestructively in the engineering site for its heavy weight and closed structure.In order to realize the mobile MRI,this study focuses on the design of gradient coil of unilateral magnet.The unilateral MRI system is used to image the local area above the magnet.The current density distribution of the gradient coil cannot be used as a series of superconducting nuclear magnetic resonance gradient coils,because the region of interest(ROI)and the wiring area of the unilateral magnet are both cylindrical side arc surfaces.Therefore,the equivalent magnetic dipole method is used to design the gradient coil,and the algorithm is improved for the special case of the wiring area and the ROI,so the X and Y gradient coils are designed.Finally,a flexible printed circuit board(PCB)is used to fabricate the gradient coil,and the magnetic field distribution of the ROI is measured by a Gauss meter,and the measured results match with the simulation results.The gradient linearities of x and y coils are 2.82%and 3.56%,respectively,less than 5%of the commercial gradient coil requirement.展开更多
By simplifying saturatedly magnetized wire-rope to magnetic dipoles of the same magnetic field strength, an equivalent magnetic dipoles model is developed and the measuring principle for recognising damage of broken w...By simplifying saturatedly magnetized wire-rope to magnetic dipoles of the same magnetic field strength, an equivalent magnetic dipoles model is developed and the measuring principle for recognising damage of broken wire was presented. The relevant calculation formulas were also deduced. A composite solution method about nonlinear optimization was given. An example was given to illustrate the use of the equivalent magnetic dipoles method for quantitative damage recognition, and demonstrates that the result of this method is consistent with the real situation, so the method is valid and practical. wire-rope, damage of broken wires, quantitative recognition, equivalent magnetic dipoles, simulate展开更多
Isolation-dependent applications require a transformer with high efficiency,low magnetizing current,and anti-DC bias capability.The kilohertz planar negative magnetic reluctance structure is used to achieve this targe...Isolation-dependent applications require a transformer with high efficiency,low magnetizing current,and anti-DC bias capability.The kilohertz planar negative magnetic reluctance structure is used to achieve this target with its magnetic-frequency variation property,which reduces the magnetic reluctance of the fundamental component.However,this design cannot be applied to low-frequency transformers owing to the high loss caused by its limited self-inductance and quality factor.To solve this problem,a pole-wrapped negative equivalent magnetic reluctance(PNEMR)structure is presented.The proposed design employed a copper-based PNEMR structure wrapped around the magnetic poles to enhance the fundamental flux and suppress the DC component of flux.Accordingly,the magnetizing current is reduced,and the isolation transformer is less susceptible to the DC bias.The proposed design can simultaneously improve the anti-DC magnetic bias capability,efficiency,and power factor of the transformers.To verify the effectiveness of the proposed design,a 10 kW C-core PNEMR structure-based transformer for isolation-dependent applications was constructed and compared to the generalized structures and transformers with planar negative magnetic reluctance structures.Results indicate that the PNEMR-based transformer can enhance the efficiency and power factor from 96.1%and 0.87 to 96.6%and 0.93,respectively,under full load conditions.展开更多
In this paper,a new equivalent magnetic network(EMN)model is established for a spoke-type permanent magnet(PM)vernier(PMV)machine.Two different modeling methods are proposed for different parts of the PMV machine,cons...In this paper,a new equivalent magnetic network(EMN)model is established for a spoke-type permanent magnet(PM)vernier(PMV)machine.Two different modeling methods are proposed for different parts of the PMV machine,considering that their magnetic field distributions are quite different.Hierarchical modeling method is proposed for the modeling of the rotor as the magnetic intensity of the rotor iron core presents gradient distribution along the radial direction.Mesh based reluctance network method is used for the modeling of flux modulation poles with irregular and unstable magnetic field distributions.Moreover,accurate PM leakage permeance calculation formulae are deduced to improve the simulation precision.The electromagnetic parameters,such as flux linkage,back electromagnetic force,electromagnetic torque and iron loss are predicted by the proposed EMN model.Finally,finite element analysis(FEA)and experimental results are given to verify the effectiveness of the proposed methods.展开更多
Conventional ball bearing reaction wheel used to control the attitude of spacecraft can't absorb the centrifugal force caused by imbalance of the wheel rotor,and there will be a torque spike at zero speed,which serio...Conventional ball bearing reaction wheel used to control the attitude of spacecraft can't absorb the centrifugal force caused by imbalance of the wheel rotor,and there will be a torque spike at zero speed,which seriously influences the accuracy and stability of spacecraft attitude control.Compared with traditional ball-bearing wheel,noncontact and no lubrication are the remarkable features of the magnetic bearing reaction wheel,and which can solve the high precision problems of wheel.In general,two radial magnetic bearings are needed in magnetic bearing wheel,and the design results in a relatively large axial dimension and smaller momentum-to-mass ratios.In this paper,a new type of magnetic bearing reaction wheel(MBRW) is introduced for satellite attitude control,and a novel integrated radial hybrid magnetic bearing(RHMB) with permanent magnet bias is designed to reduce the mass and minimize the size of the MBRW,etc.The equivalent magnetic circuit model for the RHMB is presented and a solution is found.The stiffness model is also presented,including current stiffness,position negative stiffness,as well as tilting current stiffness,tilting angular position negative stiffness,force and moment equilibrium equations.The design parameters of the RHMB are given according to the requirement of the MBRW with angular momentum of 30 N ? m ? s when the rotation speed of rotor reaches to 5 kr/min.The nonlinearity of the RHMB is shown by using the characteristic curves of force-control current-position,current stiffness,position stiffness,moment-control current-angular displacement,tilting current stiffness and tilting angular position stiffness considering all the rotor position within the clearance space and the control current.The proposed research ensures the performance of the radial magnetic bearing with permanent magnet bias,and provides theory basis for design of the magnetic bearing wheel.展开更多
In this paper,a 20kW vehicle built-in permanent magnet synchronous motor is taken as an example,and a magnetic barrier structure is added to the rotor of the motor to solve the uneven saturation problem of the rotor s...In this paper,a 20kW vehicle built-in permanent magnet synchronous motor is taken as an example,and a magnetic barrier structure is added to the rotor of the motor to solve the uneven saturation problem of the rotor side magnetic bridge.This structure improves the air-gap flux density waveform of the motor by influencing the internal magnetic flux path of the motor rotor,thus improving the sine of the no-load back EMF waveform of the motor and reducing the torque ripple of the motor.At the same time,Taguchi method is used to optimize the structural parameters of the added magnetic barrier.In order to facilitate the analysis of its uneven saturation phenomenon and improve the optimization effect,a simple equivalent magnetic network(EMN)model considering the uneven saturation of rotor magnetic bridge is established in this paper,and the initial values of optimization factors are selected based on this model.Finally,the no-load back EMF waveform distortion rate,torque ripple and output torque of the optimized motor are compared and analyzed,and the influence of magnetic barrier structure parameters on the electromagnetic performance of the motor is also analyzed.The results show that the optimized motor can not change the output torque of the motor as much as possible on the basis of reducing the waveform distortion rate of no-load back EMF and torque ripple.展开更多
Nowadays, electronic devices are more and more integrated into everyday life. These seamless integrations focus on mobility, but at the same time strive to be unobtrusive to the end user. With the introduction of pers...Nowadays, electronic devices are more and more integrated into everyday life. These seamless integrations focus on mobility, but at the same time strive to be unobtrusive to the end user. With the introduction of personal data assistants and intelligent cellular phones for the searching of the website, true mobile computing is closer than ever. However, battery technology, which powers most of these mobile connectivity solutions, has not kept up the same pace of improvement. The paper describes a methodology for the design and performance of a self-excited permanent-magnet generator applied to low power supplies. It combines an analytical field model, a lumped reluctance equivalent magnetic circuit, and an equivalent electrical circuit. An illustrated example of a 15-mW, 290-r/min generator is given, and the analysis techniques are validated by measurements on a prototype system.展开更多
A category of permanent-magnet-shield(PM-shield)axial-field dual-rotor segmented switched reluctance machines(ADS-SRMs)are presented in this paper.These topologies are featured by using the magnetic material to shield...A category of permanent-magnet-shield(PM-shield)axial-field dual-rotor segmented switched reluctance machines(ADS-SRMs)are presented in this paper.These topologies are featured by using the magnetic material to shield the flux leakage in the stator and rotor parts.Besides,the deployed magnets weaken the magnetic saturation in the iron core,thus increasing the main flux.Hence,the torque-production capability can be increased effectively.All the PM-shield topologies are proposed and designed based on the magnetic equivalent circuit(MEC)model of ADS-SRM,which is the original design deploying no magnet.The features of all the PM-shield topologies are compared with the original design in terms of the magnetic field distributions,flux linkages,phase inductances,torque components,and followed by their motion-coupled analyses on the torque-production capabilities,copper losses,and efficiencies.Considering the cost reduction and the stable ferrite-magnet supply,an alternative proposal using the ferrite magnets is applied to the magnetic shielding.The magnet demagnetization analysis incorporated with the thermal behavior is performed for further verification of the motor performance.展开更多
In this paper,the influences of the shape of magnetic material on the magnetoelectric(ME)properties of PZT/Metglas magnetoelectric(ME)composites have been investigated.The results indicate that,with the decrease o...In this paper,the influences of the shape of magnetic material on the magnetoelectric(ME)properties of PZT/Metglas magnetoelectric(ME)composites have been investigated.The results indicate that,with the decrease of the waist length(L w)of the dumbbell-shaped Metglas,the magnetic flux density in the center region and ME coefficients(αME)of the composites increase,while the optimal bias magnetic field H dc decreases on the contrary.In an AC magnetic field of 1 k Hz,the maximumαME(αMax)of the composite with L w=20 mm exhibits 1.3 times larger than that of the one with L w=50 mm,and the optimal H dc deceases by 15%.At the resonant frequencies of each composites,αMax is enhanced by1.3 times as L w decreases from 50 to 20 mm.The simulation made by Comsol Multiphysics and the theoretical analysis based on an equivalent magnetic circuit confirm the experimental results.展开更多
Dynamic characteristics of large permanent magnet direct‐drive generators(PMDGs)considering electromagnetic–structural coupling effects are analyzed in this study.Using the conformal mapping method,the scalar magnet...Dynamic characteristics of large permanent magnet direct‐drive generators(PMDGs)considering electromagnetic–structural coupling effects are analyzed in this study.Using the conformal mapping method,the scalar magnetic potential of the air gap magnetic field considering the slot effect is calculated.On the basis of the discrete current element and magnetic equivalent circuit model,the local magnetic saturation effect of the stator and rotor is quantitatively simulated and the air gap magnetic field intensity distribution is obtained via numerical simulation.A series of uniformly distributed equivalent electromagnetic springs are introduced to develop an electromagnetic–structural coupling finite element PMDG model.The proposed air gap field analysis method is verified by the finite element analysis results.On the basis of the test platform for the Goldwind 1.5MW PMDG,both modal and dynamic response tests for the stator/rotor coupling system are conducted,and the results are compared with the natural frequencies,mode shapes,and vibration responses obtained using the numerical model.The effects of the air gap length and rotor speed on the natural frequencies of the coupling system are analyzed.The proposed model has the potential to accurately evaluate the PMDG vibration energy,avoiding resonance points,and maintaining stable operations of the unit.展开更多
The radiation emission (RE) of multilayer primed circuit board (PCB) will cause electromagnetic compatibility problem. An efficient numerical method for evaluating the effectiveness of decoupling capacitors in red...The radiation emission (RE) of multilayer primed circuit board (PCB) will cause electromagnetic compatibility problem. An efficient numerical method for evaluating the effectiveness of decoupling capacitors in reducing RE from power ground (P/G) planes in PCB was presented. A two-dimensional boundary-element method (BEM) was used to establish the radiation model. Then, the RE was calculated by equivalent magnetic current of edge field around P/G planes. Furthermore, the radiation and input impedance of P/G planes mounted decoupling capacitors were calculated for frequency up to 5 GHz The results were compared to those of the case without decoupling capacitors. It shows that the decoupling capacitors can effectively decrease RE except for anti-resonant frequency. At higher frequencies, the decoupling effectiveness mainly depends on the parasitic inductance of capacitor pin rather than the value.展开更多
Deep learning based transformer protection has attracted increasing attention.However,its poor generalization abilities hinder the application of deep learning in the power system owing to the limited training samples...Deep learning based transformer protection has attracted increasing attention.However,its poor generalization abilities hinder the application of deep learning in the power system owing to the limited training samples.In order to improve its generalization abilities,this paper proposes a knowledge-based convolutional neural network(CNN)for the transformer protection.In general,the power experts can reliably discriminate between faulty transformers and healthy transformers only through the unsaturated parts of equivalent magnetization curve(voltage of magnetizing branch-differential current curve)but deep learning intends to focus on the combined features of saturated and unsaturated parts.Inspired by the identification process of power experts,CNN adopted a specially designed loss function in this paper which is used to identify the running states of power transformers.Specifically,the presented Restrictive Weight Sparsity substitutes a special regularization term for the common LI regularization.The presented Adaptive Sample Weight Adjustment endows the softmax loss of each sample with the optimizable weight the softmax loss of each sample with the optimizable weights to increase the impact of more-difficult-to-identify cases on the training process.With the modified loss function,the knowledge is abstractly introduced into the training process of CNN so as to successfully imitate the identification process of power experts.Accordingly,the proposed knowledge-based CNN will pay more attention to the unsaturated parts of equivalent magnetization curve even if only limited samples are included in the training process.The results of simulations and dynamic model experiments reveal that the knowledge-based CNN exhibits an improved generalization ability and the knowledge-based deep learning algorithm is a promising research direction.展开更多
基金Project supported by the State Key Development Program for Basic Research of China(Grant No.2014CB541602)the National Natural Science Foundation of China(Grant Nos.51677008 and 51707028)the Fundamental Research Funds of Central Universities,China(Grant No.106112015CDJXY150003)
文摘Low-field nuclear magnetic resonance magnet(2 MHz) is required for rock core analysis. However, due to its low field strength, it is hard to achieve a high uniform B0 field only by using the passive shimming. Therefore, active shimming is necessarily used to further improve uniformity for Halbach magnet. In this work, an equivalent magnetic dipole method is presented for designing shim coils. The minimization of the coil power dissipation is considered as an optimal object to minimize coil heating effect, and the deviation from the target field is selected as a penalty function term. The lsqnonlin optimization toolbox of MATLAB is used to solve the optimization problem. Eight shim coils are obtained in accordance with the contour of the stream function. We simulate each shim coil by ANSYS Maxwell software to verify the validity of the designed coils. Measurement results of the field distribution of these coils are consistent with those of the target fields.The uniformity of the B0 field is improved from 114.2 ppm to 26.9 ppm after using these shim coils.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51677008,51377182,51707028,and 11647098)the Fundamental Research Funds of the Central Universities,China(Grant No.106112017CDJQJ158834)the State Key Development Program for Basic Research of China(Grant No.2014CB541602)
文摘The conventional magnetic resonance imaging(MRI)equipment cannot measure large volume samples nondestructively in the engineering site for its heavy weight and closed structure.In order to realize the mobile MRI,this study focuses on the design of gradient coil of unilateral magnet.The unilateral MRI system is used to image the local area above the magnet.The current density distribution of the gradient coil cannot be used as a series of superconducting nuclear magnetic resonance gradient coils,because the region of interest(ROI)and the wiring area of the unilateral magnet are both cylindrical side arc surfaces.Therefore,the equivalent magnetic dipole method is used to design the gradient coil,and the algorithm is improved for the special case of the wiring area and the ROI,so the X and Y gradient coils are designed.Finally,a flexible printed circuit board(PCB)is used to fabricate the gradient coil,and the magnetic field distribution of the ROI is measured by a Gauss meter,and the measured results match with the simulation results.The gradient linearities of x and y coils are 2.82%and 3.56%,respectively,less than 5%of the commercial gradient coil requirement.
基金Supported by the National Natural Science Foundation of China(50475166) and Natural Science Foundation of Shandong Province (Y2002F09) and Qingdao Scientific Bureau(04-3NS-10)
文摘By simplifying saturatedly magnetized wire-rope to magnetic dipoles of the same magnetic field strength, an equivalent magnetic dipoles model is developed and the measuring principle for recognising damage of broken wire was presented. The relevant calculation formulas were also deduced. A composite solution method about nonlinear optimization was given. An example was given to illustrate the use of the equivalent magnetic dipoles method for quantitative damage recognition, and demonstrates that the result of this method is consistent with the real situation, so the method is valid and practical. wire-rope, damage of broken wires, quantitative recognition, equivalent magnetic dipoles, simulate
基金Supported by the Research Grant Council of the Hong Kong SAR Government under projects PolyU PolyU152180/19E.
文摘Isolation-dependent applications require a transformer with high efficiency,low magnetizing current,and anti-DC bias capability.The kilohertz planar negative magnetic reluctance structure is used to achieve this target with its magnetic-frequency variation property,which reduces the magnetic reluctance of the fundamental component.However,this design cannot be applied to low-frequency transformers owing to the high loss caused by its limited self-inductance and quality factor.To solve this problem,a pole-wrapped negative equivalent magnetic reluctance(PNEMR)structure is presented.The proposed design employed a copper-based PNEMR structure wrapped around the magnetic poles to enhance the fundamental flux and suppress the DC component of flux.Accordingly,the magnetizing current is reduced,and the isolation transformer is less susceptible to the DC bias.The proposed design can simultaneously improve the anti-DC magnetic bias capability,efficiency,and power factor of the transformers.To verify the effectiveness of the proposed design,a 10 kW C-core PNEMR structure-based transformer for isolation-dependent applications was constructed and compared to the generalized structures and transformers with planar negative magnetic reluctance structures.Results indicate that the PNEMR-based transformer can enhance the efficiency and power factor from 96.1%and 0.87 to 96.6%and 0.93,respectively,under full load conditions.
基金Supported by National Natural Science Foundation of China under Grant 51577084Key Project of Natural Science Foundation of Jiangsu Higher Education Institutions under Grant 15KJA470002the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘In this paper,a new equivalent magnetic network(EMN)model is established for a spoke-type permanent magnet(PM)vernier(PMV)machine.Two different modeling methods are proposed for different parts of the PMV machine,considering that their magnetic field distributions are quite different.Hierarchical modeling method is proposed for the modeling of the rotor as the magnetic intensity of the rotor iron core presents gradient distribution along the radial direction.Mesh based reluctance network method is used for the modeling of flux modulation poles with irregular and unstable magnetic field distributions.Moreover,accurate PM leakage permeance calculation formulae are deduced to improve the simulation precision.The electromagnetic parameters,such as flux linkage,back electromagnetic force,electromagnetic torque and iron loss are predicted by the proposed EMN model.Finally,finite element analysis(FEA)and experimental results are given to verify the effectiveness of the proposed methods.
基金supported by National Natural Science Foundation of China (Grant No. 60704025)
文摘Conventional ball bearing reaction wheel used to control the attitude of spacecraft can't absorb the centrifugal force caused by imbalance of the wheel rotor,and there will be a torque spike at zero speed,which seriously influences the accuracy and stability of spacecraft attitude control.Compared with traditional ball-bearing wheel,noncontact and no lubrication are the remarkable features of the magnetic bearing reaction wheel,and which can solve the high precision problems of wheel.In general,two radial magnetic bearings are needed in magnetic bearing wheel,and the design results in a relatively large axial dimension and smaller momentum-to-mass ratios.In this paper,a new type of magnetic bearing reaction wheel(MBRW) is introduced for satellite attitude control,and a novel integrated radial hybrid magnetic bearing(RHMB) with permanent magnet bias is designed to reduce the mass and minimize the size of the MBRW,etc.The equivalent magnetic circuit model for the RHMB is presented and a solution is found.The stiffness model is also presented,including current stiffness,position negative stiffness,as well as tilting current stiffness,tilting angular position negative stiffness,force and moment equilibrium equations.The design parameters of the RHMB are given according to the requirement of the MBRW with angular momentum of 30 N ? m ? s when the rotation speed of rotor reaches to 5 kr/min.The nonlinearity of the RHMB is shown by using the characteristic curves of force-control current-position,current stiffness,position stiffness,moment-control current-angular displacement,tilting current stiffness and tilting angular position stiffness considering all the rotor position within the clearance space and the control current.The proposed research ensures the performance of the radial magnetic bearing with permanent magnet bias,and provides theory basis for design of the magnetic bearing wheel.
基金supported by the National Natural Science Funds of China No.51907129Technology program of Liaoning province No.2021-MS-236。
文摘In this paper,a 20kW vehicle built-in permanent magnet synchronous motor is taken as an example,and a magnetic barrier structure is added to the rotor of the motor to solve the uneven saturation problem of the rotor side magnetic bridge.This structure improves the air-gap flux density waveform of the motor by influencing the internal magnetic flux path of the motor rotor,thus improving the sine of the no-load back EMF waveform of the motor and reducing the torque ripple of the motor.At the same time,Taguchi method is used to optimize the structural parameters of the added magnetic barrier.In order to facilitate the analysis of its uneven saturation phenomenon and improve the optimization effect,a simple equivalent magnetic network(EMN)model considering the uneven saturation of rotor magnetic bridge is established in this paper,and the initial values of optimization factors are selected based on this model.Finally,the no-load back EMF waveform distortion rate,torque ripple and output torque of the optimized motor are compared and analyzed,and the influence of magnetic barrier structure parameters on the electromagnetic performance of the motor is also analyzed.The results show that the optimized motor can not change the output torque of the motor as much as possible on the basis of reducing the waveform distortion rate of no-load back EMF and torque ripple.
文摘Nowadays, electronic devices are more and more integrated into everyday life. These seamless integrations focus on mobility, but at the same time strive to be unobtrusive to the end user. With the introduction of personal data assistants and intelligent cellular phones for the searching of the website, true mobile computing is closer than ever. However, battery technology, which powers most of these mobile connectivity solutions, has not kept up the same pace of improvement. The paper describes a methodology for the design and performance of a self-excited permanent-magnet generator applied to low power supplies. It combines an analytical field model, a lumped reluctance equivalent magnetic circuit, and an equivalent electrical circuit. An illustrated example of a 15-mW, 290-r/min generator is given, and the analysis techniques are validated by measurements on a prototype system.
基金the National Natural Science Foundation of China under Grant 51807094。
文摘A category of permanent-magnet-shield(PM-shield)axial-field dual-rotor segmented switched reluctance machines(ADS-SRMs)are presented in this paper.These topologies are featured by using the magnetic material to shield the flux leakage in the stator and rotor parts.Besides,the deployed magnets weaken the magnetic saturation in the iron core,thus increasing the main flux.Hence,the torque-production capability can be increased effectively.All the PM-shield topologies are proposed and designed based on the magnetic equivalent circuit(MEC)model of ADS-SRM,which is the original design deploying no magnet.The features of all the PM-shield topologies are compared with the original design in terms of the magnetic field distributions,flux linkages,phase inductances,torque components,and followed by their motion-coupled analyses on the torque-production capabilities,copper losses,and efficiencies.Considering the cost reduction and the stable ferrite-magnet supply,an alternative proposal using the ferrite magnets is applied to the magnetic shielding.The magnet demagnetization analysis incorporated with the thermal behavior is performed for further verification of the motor performance.
基金Supported by the National Natural Science Foundation of China(51372174,51132001,11364018 and J1210061)Natural Science Foundation of Hubei Province(2014CFB610)the Excellent Young Innovation Team Project of Hubei Province(T201429)
文摘In this paper,the influences of the shape of magnetic material on the magnetoelectric(ME)properties of PZT/Metglas magnetoelectric(ME)composites have been investigated.The results indicate that,with the decrease of the waist length(L w)of the dumbbell-shaped Metglas,the magnetic flux density in the center region and ME coefficients(αME)of the composites increase,while the optimal bias magnetic field H dc decreases on the contrary.In an AC magnetic field of 1 k Hz,the maximumαME(αMax)of the composite with L w=20 mm exhibits 1.3 times larger than that of the one with L w=50 mm,and the optimal H dc deceases by 15%.At the resonant frequencies of each composites,αMax is enhanced by1.3 times as L w decreases from 50 to 20 mm.The simulation made by Comsol Multiphysics and the theoretical analysis based on an equivalent magnetic circuit confirm the experimental results.
基金National Natural Science Foundation of China,Grant/Award Numbers:11872222,11902173State Key Laboratory of Tribology,Grant/Award Number:SKLT2021D11。
文摘Dynamic characteristics of large permanent magnet direct‐drive generators(PMDGs)considering electromagnetic–structural coupling effects are analyzed in this study.Using the conformal mapping method,the scalar magnetic potential of the air gap magnetic field considering the slot effect is calculated.On the basis of the discrete current element and magnetic equivalent circuit model,the local magnetic saturation effect of the stator and rotor is quantitatively simulated and the air gap magnetic field intensity distribution is obtained via numerical simulation.A series of uniformly distributed equivalent electromagnetic springs are introduced to develop an electromagnetic–structural coupling finite element PMDG model.The proposed air gap field analysis method is verified by the finite element analysis results.On the basis of the test platform for the Goldwind 1.5MW PMDG,both modal and dynamic response tests for the stator/rotor coupling system are conducted,and the results are compared with the natural frequencies,mode shapes,and vibration responses obtained using the numerical model.The effects of the air gap length and rotor speed on the natural frequencies of the coupling system are analyzed.The proposed model has the potential to accurately evaluate the PMDG vibration energy,avoiding resonance points,and maintaining stable operations of the unit.
基金supported by the National Natural Science Foundation of China (61171051)
文摘The radiation emission (RE) of multilayer primed circuit board (PCB) will cause electromagnetic compatibility problem. An efficient numerical method for evaluating the effectiveness of decoupling capacitors in reducing RE from power ground (P/G) planes in PCB was presented. A two-dimensional boundary-element method (BEM) was used to establish the radiation model. Then, the RE was calculated by equivalent magnetic current of edge field around P/G planes. Furthermore, the radiation and input impedance of P/G planes mounted decoupling capacitors were calculated for frequency up to 5 GHz The results were compared to those of the case without decoupling capacitors. It shows that the decoupling capacitors can effectively decrease RE except for anti-resonant frequency. At higher frequencies, the decoupling effectiveness mainly depends on the parasitic inductance of capacitor pin rather than the value.
基金supported in part by the National Natural Science Foundation of China(No.51877167).
文摘Deep learning based transformer protection has attracted increasing attention.However,its poor generalization abilities hinder the application of deep learning in the power system owing to the limited training samples.In order to improve its generalization abilities,this paper proposes a knowledge-based convolutional neural network(CNN)for the transformer protection.In general,the power experts can reliably discriminate between faulty transformers and healthy transformers only through the unsaturated parts of equivalent magnetization curve(voltage of magnetizing branch-differential current curve)but deep learning intends to focus on the combined features of saturated and unsaturated parts.Inspired by the identification process of power experts,CNN adopted a specially designed loss function in this paper which is used to identify the running states of power transformers.Specifically,the presented Restrictive Weight Sparsity substitutes a special regularization term for the common LI regularization.The presented Adaptive Sample Weight Adjustment endows the softmax loss of each sample with the optimizable weight the softmax loss of each sample with the optimizable weights to increase the impact of more-difficult-to-identify cases on the training process.With the modified loss function,the knowledge is abstractly introduced into the training process of CNN so as to successfully imitate the identification process of power experts.Accordingly,the proposed knowledge-based CNN will pay more attention to the unsaturated parts of equivalent magnetization curve even if only limited samples are included in the training process.The results of simulations and dynamic model experiments reveal that the knowledge-based CNN exhibits an improved generalization ability and the knowledge-based deep learning algorithm is a promising research direction.