The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdoma...The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdomain method.Equivalent models with mass-spring oscillators are established to replace continuous fluid.Combined with the least square technique,Chebyshev polynomials are employed to fit horizontal,rocking and horizontal-rocking coupling impedances of soil,respectively.A lumped parameter model for impedance is presented to describe the effects of soil on tank structures.A mechanical model for the soil-foundation-tank-liquid-baffle system with small amount of calculation and high accuracy is proposed using the substructure technique.The analytical solutions are in comparison with data from reported literature and numerical codes to validate the effectiveness and correctness of the model.Detailed dynamic properties and seismic responses of the soil-tank system are given for the baffle number,size and location as well as soil parameter.展开更多
The rock mass consists of rock blocks and structural planes,which can reduce its integrity and strength.Therefore,accurately obtaining the characteristics of the rock mass structural plane is a prerequisite for evalua...The rock mass consists of rock blocks and structural planes,which can reduce its integrity and strength.Therefore,accurately obtaining the characteristics of the rock mass structural plane is a prerequisite for evaluating stability and designing supports in underground engineering.Currently,there are no effective testing methods for the characteristic parameters of the rock mass structural plane in underground engineering.The paper presents the digital drilling technology as a new testing method of rock mass structural planes.Flawed rock specimens with cracks of varying widths and angles were used to simulate the rock mass structural planes,and the multifunctional rock mass digital drilling test system was employed to carry out the digital drilling tests.The analysis focuses on the variation laws of drilling parameters,such as drilling pressure and drilling torque,affected by the characteristics of prefabricated cracks,and clarifies the degradation mechanism of rock equivalent compressive strength.Additionally,an identification model for the characteristic parameters of rock mass structural planes during drilling is established.The test results indicate that the average difference of the characteristics of prefabricated cracks identified by the equivalent compressive strength is 2.45°and 0.82 mm,respectively.The identification model while drilling is verified to be correct due to the high identification accuracy.Based on this,a method for testing the characteristic parameters of the surrounding rock structural plane while drilling is proposed.The research offers a theoretical and methodological foundation for precise in situ identification of structural planes of the surrounding rock in underground engineering.展开更多
The response displacement method(RDM)is recommended for the seismic analysis of underground structures in the transverse direction for many codes,including bases for design of structures-seismic actions for designing ...The response displacement method(RDM)is recommended for the seismic analysis of underground structures in the transverse direction for many codes,including bases for design of structures-seismic actions for designing geotechnical works(ISO 23469)and code for seismic design of urban rail transit structures(GB 50909-2014).However,there are some obvious limitations in the application of RDM.Springs and the shear stress of the soil could be approximately evaluated for the structures having a simple cross section,such as rectangular and circular structures.It is necessary to propose simplified seismic analysis methods for structures with complex cross sections.This paper refers to the idea of RDM and proposes three generalized response displacement methods(GRDM).In GRDM1,a part of the soil surrounding a structure is selected to generate a generalized underground structure with a rectangular cross section,and the same analysis model as RDM is applied to analyze the responses of the structure.In GRDM2,a hollow soil model without a generalized structure is used to compute the equivalent load caused by the relative displacement of the soil,and the soil-structure interaction model is applied to calculate the responses of the structure.In GRDM3,a continuous soil model is applied to compute the equivalent load caused by the relative displacement and shear stress of the soil,and the soil-structure interaction model is applied to analyze the responses of the structure,which is the same as the model used in GRDM2.The time-history analysis method(THAM)is used to evaluate the accuracy of the proposed simplified methods.Results show that the error of GRDM1 is about 20%,while the error is only 5%for GRDM2 and GRDM3.Among the three proposed methods,GRDM3 has obvious advantages regarding calculation efficiency and accuracy.Therefore,it is recommended to use GRDM3 for the seismic response analysis of underground structures that have conventional simple or complex cross sections.展开更多
The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident...The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident wave into equivalent loads on the cutoff boundaries. The wave method has high precision, but the implementation is complicated, especially for three-dimensional models. By deducing another form of equivalent input seismic loads in the fi nite element model, a new seismic wave input method is proposed. In the new method, by imposing the displacements of the free wave fi eld on the nodes of the substructure composed of elements that contain artifi cial boundaries, the equivalent input seismic loads are obtained through dynamic analysis of the substructure. Subsequently, the equivalent input seismic loads are imposed on the artifi cial boundary nodes to complete the seismic wave input and perform seismic analysis of the soil-structure dynamic interaction model. Compared with the wave method, the new method is simplifi ed by avoiding the complex processes of calculating the equivalent input seismic loads. The validity of the new method is verifi ed by the dynamic analysis numerical examples of the homogeneous and layered half space under vertical and oblique incident seismic waves.展开更多
The stress combination method for the fatigue assessment of the hatch comer of a bulk carrier was investigated based on equivalent waves. The principles of the equivalent waves of ship structures were given, including...The stress combination method for the fatigue assessment of the hatch comer of a bulk carrier was investigated based on equivalent waves. The principles of the equivalent waves of ship structures were given, including the determination of the dominant load parameter, heading, frequency, and amplitude of the equivalent regular waves. The dominant load parameters of the hatch comer of a bulk carrier were identified by the structural stress response analysis, and then a series of equivalent regular waves were defined based on these parameters. A combination method of the structural stress ranges under the different equivalent waves was developed for the fatigue analysis. The combination factors were obtained by least square regression analysis with the stress ranges derived from spectral fatigue analysis as the target value. The proposed method was applied to the hatch comer of another bulk carrier as an example. This shows that the results from the equivalent wave approach agree well with those from the spectral fatigue analysis. The workload is reduced substantially. This method can be referenced in the fatigue assessment of the hatch comer of a bulk carrier.展开更多
The neutron shielding component of ITER (International Thermonuclear Experimental Reactor) vacuum vessel is a kind of structure resembling a wall in appearance. A FE (finite element) model is set up by using ANSYS...The neutron shielding component of ITER (International Thermonuclear Experimental Reactor) vacuum vessel is a kind of structure resembling a wall in appearance. A FE (finite element) model is set up by using ANSYS code in terms of its structural features. Static analysis, thermal expansion analysis and dynamic analysis are performed. The static results show that the stress and displacement distribution are allowable, but the high stress appears in the junction between the upper and lower parts. The modal analysis indicates that the biggest deformation exists in the port area. Through modal superposition, the single-point response has been found with the lower rank frequency of the acceleration seismic response spectrum. But the deformation and the stress values are within the permissible limit. The analysis results would benefit the work in the next step and provide some reference for the implementation of the engineering plan in the future.展开更多
To solve the problems of divergence,low accuracy and project application of membrane wrinkling analysis,an analysis method of zero shear modulus and equivalent stiffness was proposed.This method is an improvement to t...To solve the problems of divergence,low accuracy and project application of membrane wrinkling analysis,an analysis method of zero shear modulus and equivalent stiffness was proposed.This method is an improvement to the previous method (Method I) of local coordinate transposition and stiffness equivalence.The new method is derived and the feasibility is theoretically proved.A small-scale membrane structure is analyzed by the two methods,and the results show that the computational efficiency of the new method (Method II) is approximately 23 times that of Method I.When Method II is applied to a large-scale membrane stadium structure,it is found that this new method can quickly make the second principal stress of one way wrinkled elements zero,and make the two principal stresses of two-way wrinkled elements zero as well.It could attain the correct load responses right after the appearance of wrinkled elements,which indicates that Method II can be applied to wrinkling analysis of large-scale membrane structures.展开更多
The paper presents an improved equivalent circuit parameters extraction method for the dumbbell-shaped defected ground structure (DGS). The new extraction parameters equations are obtained in closed-form expressions, ...The paper presents an improved equivalent circuit parameters extraction method for the dumbbell-shaped defected ground structure (DGS). The new extraction parameters equations are obtained in closed-form expressions, which contain S11 and S21. The DGS unit with center frequency of 5 GHz is designed and fabricated on a TLX substrate with thickness of 1 mm and dielectric constant of 2.55. The circuit simulated results are in good agreement with the measured results. This parameters extraction method can be widely used for the design and analysis of DGS .展开更多
This paper presents a new procedure to transform an SSI system into an equivalent SDOF system using twice equivalence. A pushover analysis procedure based on the capacity spectrum method for buildings with SSI effects...This paper presents a new procedure to transform an SSI system into an equivalent SDOF system using twice equivalence. A pushover analysis procedure based on the capacity spectrum method for buildings with SSI effects (PASSI) is then established based on the equivalent SDOF system, and the modified response spectrum and equivalent capacity spectrum are obtained. Furthermore, the approximate formulas to obtain the dynamic stiffness of foundations are suggested. Three steel buildings with different story heights (3, 9 and 20) including SSI effects are analyzed under two far-field and two near-field historical records and an artificial seismic time history using the two PASSI procedures and the nonlinear response history analysis (NLhRHA) method. The results are compared and discussed. Finally, combined with seismic design response spectrum, the nonlinear seismic response of a 9-story building with SSI effects is analyzed using the PASSI procedures, and its seismic performance is evaluated according to the Chinese 'Code for Seismic Design of Buildings. The feasibility of the proposed procedure is verified.展开更多
针对目前复合材料抗爆容器工程设计方法合理性欠缺现状,基于轻量化思路,结合动力系数法及网格理论提出了可用于含金属内衬复合材料抗爆容器设计的“等代设计法”。采用该方法完成了内径0.5 m、抗爆当量1 kg TNT的复合材料圆筒初始设计,...针对目前复合材料抗爆容器工程设计方法合理性欠缺现状,基于轻量化思路,结合动力系数法及网格理论提出了可用于含金属内衬复合材料抗爆容器设计的“等代设计法”。采用该方法完成了内径0.5 m、抗爆当量1 kg TNT的复合材料圆筒初始设计,复合材料圆筒的面密度由等效金属圆筒的19.3 g/cm^(2)降低到3.6 g/cm^(2)。在该圆筒内部开展了炸药加载试验,结果表明圆筒设计合理,该设计方法有效,为抗爆容器的轻量化设计提供了新思路。展开更多
根据ST12钢的双点及三点拉剪电阻点焊试件的恒幅疲劳测试结果,分别使用缺口应力法和等效结构应力法进行疲劳寿命预测。在使用缺口应力法时,按试件的实际尺寸和国际焊接学会(International institute of welding, IIW)推荐标准,分别建立...根据ST12钢的双点及三点拉剪电阻点焊试件的恒幅疲劳测试结果,分别使用缺口应力法和等效结构应力法进行疲劳寿命预测。在使用缺口应力法时,按试件的实际尺寸和国际焊接学会(International institute of welding, IIW)推荐标准,分别建立了双点和三点拉剪试件的三维实体有限元模型进行弹性应力分析,从有限元分析结果提取von Mises最大应力变化值,结合IIW推荐标准中的S-N曲线对试件进行疲劳寿命分析预测;在使用结构应力法时则采用梁壳混合单元进行有限元应力分析,并且根据主S-N曲线进行疲劳寿命预测。结果表明,在低周疲劳范围内,缺口应力法和等效结构应力法预测的结果相对于试件的实际寿命有较好地相关性,其中等效结构应力法的结果更接近实验寿命结果。展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51978336 and 11702117)the Science and Technology Plan Project of Department of Communications of Zhejiang Province(Grant No.2021051)Nantong City Social Livelihood Science and Technology Project(Grant No.MS22022067).
文摘The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdomain method.Equivalent models with mass-spring oscillators are established to replace continuous fluid.Combined with the least square technique,Chebyshev polynomials are employed to fit horizontal,rocking and horizontal-rocking coupling impedances of soil,respectively.A lumped parameter model for impedance is presented to describe the effects of soil on tank structures.A mechanical model for the soil-foundation-tank-liquid-baffle system with small amount of calculation and high accuracy is proposed using the substructure technique.The analytical solutions are in comparison with data from reported literature and numerical codes to validate the effectiveness and correctness of the model.Detailed dynamic properties and seismic responses of the soil-tank system are given for the baffle number,size and location as well as soil parameter.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFC2907600)the National Natural Science Foundation of China(Grant Nos.42277174 and 52204260).
文摘The rock mass consists of rock blocks and structural planes,which can reduce its integrity and strength.Therefore,accurately obtaining the characteristics of the rock mass structural plane is a prerequisite for evaluating stability and designing supports in underground engineering.Currently,there are no effective testing methods for the characteristic parameters of the rock mass structural plane in underground engineering.The paper presents the digital drilling technology as a new testing method of rock mass structural planes.Flawed rock specimens with cracks of varying widths and angles were used to simulate the rock mass structural planes,and the multifunctional rock mass digital drilling test system was employed to carry out the digital drilling tests.The analysis focuses on the variation laws of drilling parameters,such as drilling pressure and drilling torque,affected by the characteristics of prefabricated cracks,and clarifies the degradation mechanism of rock equivalent compressive strength.Additionally,an identification model for the characteristic parameters of rock mass structural planes during drilling is established.The test results indicate that the average difference of the characteristics of prefabricated cracks identified by the equivalent compressive strength is 2.45°and 0.82 mm,respectively.The identification model while drilling is verified to be correct due to the high identification accuracy.Based on this,a method for testing the characteristic parameters of the surrounding rock structural plane while drilling is proposed.The research offers a theoretical and methodological foundation for precise in situ identification of structural planes of the surrounding rock in underground engineering.
基金National Natural Science Foundation of China under Grant No.52108453Natural Science Foundation of Jiangxi Province of China under Grant No.20212BAB214014+1 种基金National Key R&D Program of China under Grant No.2018YFC1504305Joint Funds of the National Natural Science Foundation of China under Grant No.U1839201。
文摘The response displacement method(RDM)is recommended for the seismic analysis of underground structures in the transverse direction for many codes,including bases for design of structures-seismic actions for designing geotechnical works(ISO 23469)and code for seismic design of urban rail transit structures(GB 50909-2014).However,there are some obvious limitations in the application of RDM.Springs and the shear stress of the soil could be approximately evaluated for the structures having a simple cross section,such as rectangular and circular structures.It is necessary to propose simplified seismic analysis methods for structures with complex cross sections.This paper refers to the idea of RDM and proposes three generalized response displacement methods(GRDM).In GRDM1,a part of the soil surrounding a structure is selected to generate a generalized underground structure with a rectangular cross section,and the same analysis model as RDM is applied to analyze the responses of the structure.In GRDM2,a hollow soil model without a generalized structure is used to compute the equivalent load caused by the relative displacement of the soil,and the soil-structure interaction model is applied to calculate the responses of the structure.In GRDM3,a continuous soil model is applied to compute the equivalent load caused by the relative displacement and shear stress of the soil,and the soil-structure interaction model is applied to analyze the responses of the structure,which is the same as the model used in GRDM2.The time-history analysis method(THAM)is used to evaluate the accuracy of the proposed simplified methods.Results show that the error of GRDM1 is about 20%,while the error is only 5%for GRDM2 and GRDM3.Among the three proposed methods,GRDM3 has obvious advantages regarding calculation efficiency and accuracy.Therefore,it is recommended to use GRDM3 for the seismic response analysis of underground structures that have conventional simple or complex cross sections.
基金National Natural Science Foundation of China under Grant No.51478247National Key Research and Development Program of China under Grant No.2016YFC1402800
文摘The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident wave into equivalent loads on the cutoff boundaries. The wave method has high precision, but the implementation is complicated, especially for three-dimensional models. By deducing another form of equivalent input seismic loads in the fi nite element model, a new seismic wave input method is proposed. In the new method, by imposing the displacements of the free wave fi eld on the nodes of the substructure composed of elements that contain artifi cial boundaries, the equivalent input seismic loads are obtained through dynamic analysis of the substructure. Subsequently, the equivalent input seismic loads are imposed on the artifi cial boundary nodes to complete the seismic wave input and perform seismic analysis of the soil-structure dynamic interaction model. Compared with the wave method, the new method is simplifi ed by avoiding the complex processes of calculating the equivalent input seismic loads. The validity of the new method is verifi ed by the dynamic analysis numerical examples of the homogeneous and layered half space under vertical and oblique incident seismic waves.
基金Supported by the National Natural Science Foundation of China (50809019).
文摘The stress combination method for the fatigue assessment of the hatch comer of a bulk carrier was investigated based on equivalent waves. The principles of the equivalent waves of ship structures were given, including the determination of the dominant load parameter, heading, frequency, and amplitude of the equivalent regular waves. The dominant load parameters of the hatch comer of a bulk carrier were identified by the structural stress response analysis, and then a series of equivalent regular waves were defined based on these parameters. A combination method of the structural stress ranges under the different equivalent waves was developed for the fatigue analysis. The combination factors were obtained by least square regression analysis with the stress ranges derived from spectral fatigue analysis as the target value. The proposed method was applied to the hatch comer of another bulk carrier as an example. This shows that the results from the equivalent wave approach agree well with those from the spectral fatigue analysis. The workload is reduced substantially. This method can be referenced in the fatigue assessment of the hatch comer of a bulk carrier.
基金the National 973 program of China(No.2004CB720704)
文摘The neutron shielding component of ITER (International Thermonuclear Experimental Reactor) vacuum vessel is a kind of structure resembling a wall in appearance. A FE (finite element) model is set up by using ANSYS code in terms of its structural features. Static analysis, thermal expansion analysis and dynamic analysis are performed. The static results show that the stress and displacement distribution are allowable, but the high stress appears in the junction between the upper and lower parts. The modal analysis indicates that the biggest deformation exists in the port area. Through modal superposition, the single-point response has been found with the lower rank frequency of the acceleration seismic response spectrum. But the deformation and the stress values are within the permissible limit. The analysis results would benefit the work in the next step and provide some reference for the implementation of the engineering plan in the future.
基金Project(020940) supported by the Natural Science Foundation of Guangdong Province,China
文摘To solve the problems of divergence,low accuracy and project application of membrane wrinkling analysis,an analysis method of zero shear modulus and equivalent stiffness was proposed.This method is an improvement to the previous method (Method I) of local coordinate transposition and stiffness equivalence.The new method is derived and the feasibility is theoretically proved.A small-scale membrane structure is analyzed by the two methods,and the results show that the computational efficiency of the new method (Method II) is approximately 23 times that of Method I.When Method II is applied to a large-scale membrane stadium structure,it is found that this new method can quickly make the second principal stress of one way wrinkled elements zero,and make the two principal stresses of two-way wrinkled elements zero as well.It could attain the correct load responses right after the appearance of wrinkled elements,which indicates that Method II can be applied to wrinkling analysis of large-scale membrane structures.
文摘The paper presents an improved equivalent circuit parameters extraction method for the dumbbell-shaped defected ground structure (DGS). The new extraction parameters equations are obtained in closed-form expressions, which contain S11 and S21. The DGS unit with center frequency of 5 GHz is designed and fabricated on a TLX substrate with thickness of 1 mm and dielectric constant of 2.55. The circuit simulated results are in good agreement with the measured results. This parameters extraction method can be widely used for the design and analysis of DGS .
基金National Natural Science Foundation of China Under Granted No.50538020Youth Science Foundation of Harbin City Under Grand No.2005AFXXJ015Youth Science Foundation of Heilongjiang Institute of Science and Technology
文摘This paper presents a new procedure to transform an SSI system into an equivalent SDOF system using twice equivalence. A pushover analysis procedure based on the capacity spectrum method for buildings with SSI effects (PASSI) is then established based on the equivalent SDOF system, and the modified response spectrum and equivalent capacity spectrum are obtained. Furthermore, the approximate formulas to obtain the dynamic stiffness of foundations are suggested. Three steel buildings with different story heights (3, 9 and 20) including SSI effects are analyzed under two far-field and two near-field historical records and an artificial seismic time history using the two PASSI procedures and the nonlinear response history analysis (NLhRHA) method. The results are compared and discussed. Finally, combined with seismic design response spectrum, the nonlinear seismic response of a 9-story building with SSI effects is analyzed using the PASSI procedures, and its seismic performance is evaluated according to the Chinese 'Code for Seismic Design of Buildings. The feasibility of the proposed procedure is verified.
文摘根据ST12钢的双点及三点拉剪电阻点焊试件的恒幅疲劳测试结果,分别使用缺口应力法和等效结构应力法进行疲劳寿命预测。在使用缺口应力法时,按试件的实际尺寸和国际焊接学会(International institute of welding, IIW)推荐标准,分别建立了双点和三点拉剪试件的三维实体有限元模型进行弹性应力分析,从有限元分析结果提取von Mises最大应力变化值,结合IIW推荐标准中的S-N曲线对试件进行疲劳寿命分析预测;在使用结构应力法时则采用梁壳混合单元进行有限元应力分析,并且根据主S-N曲线进行疲劳寿命预测。结果表明,在低周疲劳范围内,缺口应力法和等效结构应力法预测的结果相对于试件的实际寿命有较好地相关性,其中等效结构应力法的结果更接近实验寿命结果。