Aluminum-oxide films deposited as gate dielectrics on germanium (Ge) by atomic layer deposition were post oxidized in an ozone atmosphere. No additional interfacial layer was electron microscopy and X-ray photoelect...Aluminum-oxide films deposited as gate dielectrics on germanium (Ge) by atomic layer deposition were post oxidized in an ozone atmosphere. No additional interfacial layer was electron microscopy and X-ray photoelectron spectroscopy detected by the high-resolution cross-sectional transmission measurements made after the ozone post oxidation (OPO) treatment. Decreases in the equivalent oxide thickness of the OPO-treated Al2O3/Ge MOS capacitors were confirmed. Furthermore, a continuous decrease in the gate leakage current was achieved with increasing OPO treatment time. The results can be attributed to the film quality having been improved by the OPO treatment.展开更多
Electrical properties of high quality ultra thin nitride/oxynitride(N/O)stack dielectrics pMOS capacitor with refractory metal gate electrode are investigated,and ultra thin (<2 nm) N/O stack gate dielectrics with ...Electrical properties of high quality ultra thin nitride/oxynitride(N/O)stack dielectrics pMOS capacitor with refractory metal gate electrode are investigated,and ultra thin (<2 nm) N/O stack gate dielectrics with significant low leakage current and high resistance to boron penetration are fabricated.Experiment results show that the stack gate dielectric of nitride/oxynitride combined with improved sputtered tungsten/titanium nitride (W/TiN) gate electrode is one of the candidates for deep sub-micron metal gate CMOS devices.展开更多
By complementing the equivalent oxide thickness (EOT) of a 1.7nm nitride/oxynitride (N/O) stack gate dielectric (EOT- 1.7nm) with a W/TiN metal gate electrode,metal gate CMOS devices with sub-100nm gate length a...By complementing the equivalent oxide thickness (EOT) of a 1.7nm nitride/oxynitride (N/O) stack gate dielectric (EOT- 1.7nm) with a W/TiN metal gate electrode,metal gate CMOS devices with sub-100nm gate length are fabricated in China for the first time. The key technologies adopted to restrain SCE and to improve drive ability include a 1.7nm N/O stack gate dielectric, non-CMP planarization technology, a T-type refractory W/TiN metal stack gate electrode, and a novel super steep retrograde channel doping using heavy ion implantation and a double sidewall scheme. Using these optimized key technologies, high performance 95nm metal gate CMOS devices with excellent SCE and good driving ability are fabricated. Under power supply voltages of VDS ± 1.5V and VGS± 1.8V,drive currents of 679μA/μm for nMOS and - 327μA/μm for pMOS are obtained. A subthreshold slope of 84.46mV/dec, DIBL of 34.76mV/V, and Vth of 0.26V for nMOS, and a subthreshold slope of 107.4mV/dec,DIBL of 54.46mV/V, and Vth of 0.27V for pMOS are achieved. These results show that the combined technology has indeed thoroughly eliminated the boron penetration phenomenon and polysilicon depletion effect ,effectively reduced gate tunneling leakage, and improved device reliability.展开更多
H_2O-based and O_3-based La_xAl_yO nanolaminate films were deposited on Si substrates by atomic layer deposition(ALD). Structures and performances of the films were changed by different barrier layers. The effects o...H_2O-based and O_3-based La_xAl_yO nanolaminate films were deposited on Si substrates by atomic layer deposition(ALD). Structures and performances of the films were changed by different barrier layers. The effects of different structures on the electrical characteristics and physical properties of the La_xAl_yO films were studied. Chemical bonds in the La_xAl_yO films grown with different structures and different oxidants were also investigated with x-ray photoelectron spectroscopy(XPS). The preliminary testing results indicate that the La_xAl_yO films with different structures and different oxidants show different characteristics, including dielectric constant, equivalent oxide thickness(EOT), electrical properties, and stability.展开更多
Bi_(2)SeO_(5)是一种具有优异电绝缘性能的范德华(vdW)层状介电材料,引起了极大关注.然而,目前关于Bi_(2)SeO_(5)的研究主要停留在实验层面,仍然缺乏对其原子级薄膜的介电性能的相关理论认识.本文通过第一性原理计算确定了Bi_(2)SeO_(5...Bi_(2)SeO_(5)是一种具有优异电绝缘性能的范德华(vdW)层状介电材料,引起了极大关注.然而,目前关于Bi_(2)SeO_(5)的研究主要停留在实验层面,仍然缺乏对其原子级薄膜的介电性能的相关理论认识.本文通过第一性原理计算确定了Bi_(2)SeO_(5)的介电性能,发现其块体、双层和单层均具有超高平均介电常数(εr>20).研究表明,单层Bi_(2)SeO_(5)与双层Bi_(2)O_(2)Se之间的导带和价带能量偏移量均大于1 eV,表明单层Bi_(2)SeO_(5)依然可作为原子薄Bi_(2)O_(2)Se的良好介电层.此外,不同于h-BN或其他2D vdW绝缘体,Bi_(2)SeO_(5)的εr由其离子部分主导,且随着厚度的减小几乎保持不变.计算发现,单层Bi_(2)SeO_(5)的等效氧化层厚度可薄至0.3 n m,且单层Bi_(2)SeO_(5)在拉伸或压缩应变达到6%时均能保持高介电常数,这极大地促进了它与各种二维半导体的集成.本工作证明单层Bi_(2)SeO_(5)可以作为高性能二维电子器件良好的封装和介电层.展开更多
In this paper, we report the fabrication, electrical and physical characteristics of TiN/HfO2/Si MOS capacitors with erbium (Er) ion implantation. It is demonstrated that the fiat band voltage can be reduced by 0.4 ...In this paper, we report the fabrication, electrical and physical characteristics of TiN/HfO2/Si MOS capacitors with erbium (Er) ion implantation. It is demonstrated that the fiat band voltage can be reduced by 0.4 V due to the formation of Er oxide. Moreover, it is observed that the equivalent oxide thickness is thinned down by 0.5 nm because the thickness of interfacial layer is significantly reduced, which is thought to be attributed to the strong binding capability of the implanted Er atoms with oxygen atoms. In addition, cross-sectional transmission electron microscopy experiment shows that the HfO2 layer with Er ion implantation is still amorphous after annealing at a high temperature. This Er ion implantation technique has the potential to be implemented as a band edge metal gate solution for NMOS without a capping layer, and may also satisfy the demand of the EOT reduction in 32 nm technology node.展开更多
ALD HfO2 films fabricated by a novel multi deposition multi annealing (MDMA) technique are inves- tigated, we have included samples both with and without a Ti scavenging layer. As compared to the reference gate stac...ALD HfO2 films fabricated by a novel multi deposition multi annealing (MDMA) technique are inves- tigated, we have included samples both with and without a Ti scavenging layer. As compared to the reference gate stack treated by conventional one-time deposition and annealing (D&A), devices receiving MDMA show a signif- icant reduction in leakage current. Meanwhile, EOT growth is effectively controlled by the Ti scavenging layer. This improvement strongly correlates with the cycle number of D&A (while keeping the total annealing time and total dielectrics thickness the same). Transmission electron microscope and energy-dispersive X-ray spectroscopy analysis suggests that oxygen incorporation into both the high-k film and the interfacial layer is likely to be re- sponsible for the improvement of the device. This novel MDMA is promising for the development of gate stack technology in a gate last integration scheme.展开更多
基金supported by the National Program for Key Basic Research Projects (973 Program) of China (Grant No. 2011CBA00607)the National Natural Science Foundation of China (Grant Nos. 61106089 and 51102048)+2 种基金the National Science and Technology Major Projects (Grant No. 2009ZX02035)the State Key Laboratory of ASIC and System Project (Grant No. 11MS017)the Open Funds of State Key Laboratory of ASIC and System at Fudan University (Grant No. 10KF001)
文摘Aluminum-oxide films deposited as gate dielectrics on germanium (Ge) by atomic layer deposition were post oxidized in an ozone atmosphere. No additional interfacial layer was electron microscopy and X-ray photoelectron spectroscopy detected by the high-resolution cross-sectional transmission measurements made after the ozone post oxidation (OPO) treatment. Decreases in the equivalent oxide thickness of the OPO-treated Al2O3/Ge MOS capacitors were confirmed. Furthermore, a continuous decrease in the gate leakage current was achieved with increasing OPO treatment time. The results can be attributed to the film quality having been improved by the OPO treatment.
文摘Electrical properties of high quality ultra thin nitride/oxynitride(N/O)stack dielectrics pMOS capacitor with refractory metal gate electrode are investigated,and ultra thin (<2 nm) N/O stack gate dielectrics with significant low leakage current and high resistance to boron penetration are fabricated.Experiment results show that the stack gate dielectric of nitride/oxynitride combined with improved sputtered tungsten/titanium nitride (W/TiN) gate electrode is one of the candidates for deep sub-micron metal gate CMOS devices.
文摘By complementing the equivalent oxide thickness (EOT) of a 1.7nm nitride/oxynitride (N/O) stack gate dielectric (EOT- 1.7nm) with a W/TiN metal gate electrode,metal gate CMOS devices with sub-100nm gate length are fabricated in China for the first time. The key technologies adopted to restrain SCE and to improve drive ability include a 1.7nm N/O stack gate dielectric, non-CMP planarization technology, a T-type refractory W/TiN metal stack gate electrode, and a novel super steep retrograde channel doping using heavy ion implantation and a double sidewall scheme. Using these optimized key technologies, high performance 95nm metal gate CMOS devices with excellent SCE and good driving ability are fabricated. Under power supply voltages of VDS ± 1.5V and VGS± 1.8V,drive currents of 679μA/μm for nMOS and - 327μA/μm for pMOS are obtained. A subthreshold slope of 84.46mV/dec, DIBL of 34.76mV/V, and Vth of 0.26V for nMOS, and a subthreshold slope of 107.4mV/dec,DIBL of 54.46mV/V, and Vth of 0.27V for pMOS are achieved. These results show that the combined technology has indeed thoroughly eliminated the boron penetration phenomenon and polysilicon depletion effect ,effectively reduced gate tunneling leakage, and improved device reliability.
基金Project supported supported by the National Natural Science Foundation of China(Grant Nos.61376099 and 61434007)
文摘H_2O-based and O_3-based La_xAl_yO nanolaminate films were deposited on Si substrates by atomic layer deposition(ALD). Structures and performances of the films were changed by different barrier layers. The effects of different structures on the electrical characteristics and physical properties of the La_xAl_yO films were studied. Chemical bonds in the La_xAl_yO films grown with different structures and different oxidants were also investigated with x-ray photoelectron spectroscopy(XPS). The preliminary testing results indicate that the La_xAl_yO films with different structures and different oxidants show different characteristics, including dielectric constant, equivalent oxide thickness(EOT), electrical properties, and stability.
基金supported by the National Natural Science Foundation of China (92064005, 12104072, and 12147102)Chongqing Research Program of Basic Research and Frontier Technology,China (cstc2021jcyj-msxm X0640)the Fundamental Research Funds for the Central Universities of China (2023CDJXY-048)。
文摘Bi_(2)SeO_(5)是一种具有优异电绝缘性能的范德华(vdW)层状介电材料,引起了极大关注.然而,目前关于Bi_(2)SeO_(5)的研究主要停留在实验层面,仍然缺乏对其原子级薄膜的介电性能的相关理论认识.本文通过第一性原理计算确定了Bi_(2)SeO_(5)的介电性能,发现其块体、双层和单层均具有超高平均介电常数(εr>20).研究表明,单层Bi_(2)SeO_(5)与双层Bi_(2)O_(2)Se之间的导带和价带能量偏移量均大于1 eV,表明单层Bi_(2)SeO_(5)依然可作为原子薄Bi_(2)O_(2)Se的良好介电层.此外,不同于h-BN或其他2D vdW绝缘体,Bi_(2)SeO_(5)的εr由其离子部分主导,且随着厚度的减小几乎保持不变.计算发现,单层Bi_(2)SeO_(5)的等效氧化层厚度可薄至0.3 n m,且单层Bi_(2)SeO_(5)在拉伸或压缩应变达到6%时均能保持高介电常数,这极大地促进了它与各种二维半导体的集成.本工作证明单层Bi_(2)SeO_(5)可以作为高性能二维电子器件良好的封装和介电层.
基金supported by the State Key Development Program for Basic Research of China(Grant No. 2011CBA00602)the National Natural Science Foundation of China(Grant Nos. 60876076 and 60976013)
文摘In this paper, we report the fabrication, electrical and physical characteristics of TiN/HfO2/Si MOS capacitors with erbium (Er) ion implantation. It is demonstrated that the fiat band voltage can be reduced by 0.4 V due to the formation of Er oxide. Moreover, it is observed that the equivalent oxide thickness is thinned down by 0.5 nm because the thickness of interfacial layer is significantly reduced, which is thought to be attributed to the strong binding capability of the implanted Er atoms with oxygen atoms. In addition, cross-sectional transmission electron microscopy experiment shows that the HfO2 layer with Er ion implantation is still amorphous after annealing at a high temperature. This Er ion implantation technique has the potential to be implemented as a band edge metal gate solution for NMOS without a capping layer, and may also satisfy the demand of the EOT reduction in 32 nm technology node.
基金Project supported by the Integrated Circuit Advanced Process Center,Institute of Microelectronics of Chinese Academy of Sciences,and the Ministry of Technology,China
文摘ALD HfO2 films fabricated by a novel multi deposition multi annealing (MDMA) technique are inves- tigated, we have included samples both with and without a Ti scavenging layer. As compared to the reference gate stack treated by conventional one-time deposition and annealing (D&A), devices receiving MDMA show a signif- icant reduction in leakage current. Meanwhile, EOT growth is effectively controlled by the Ti scavenging layer. This improvement strongly correlates with the cycle number of D&A (while keeping the total annealing time and total dielectrics thickness the same). Transmission electron microscope and energy-dispersive X-ray spectroscopy analysis suggests that oxygen incorporation into both the high-k film and the interfacial layer is likely to be re- sponsible for the improvement of the device. This novel MDMA is promising for the development of gate stack technology in a gate last integration scheme.