Strapdown non-exchangeable error compensation technology in high dynamic environment is one of the key technologies of strapdown inertial navigation system.Mathematical platform is used in strapdown inertial navigatio...Strapdown non-exchangeable error compensation technology in high dynamic environment is one of the key technologies of strapdown inertial navigation system.Mathematical platform is used in strapdown inertial navigation system instead of physical platform in traditional platform inertial navigation system,which improves reliability and reduces cost and volume of system.The maximum error source of attitude matrix solution is the non-exchangeable error of rotation due to the non-exchangeable of finite rotation of rigid bodies.The rotation non-exchangeable error reaches the maximum in coning motion,although it can be reduced by shortening the correction period and increasing the real-time calculation.The equivalent rotation vector method is used to modify the attitude to reduce the coning error in this paper.Simulation experiments show that the equivalent rotation vector method can effectively suppress the non-exchangeable error and improve the accuracy of attitude calculation.展开更多
In this paper the characteristics of Sq variation of geomagnetic field in the region of the Chinese Great Wall Station (CGWS), Antarctica, in winter are analyzed from geomagnetic data obtained at the Geomagnetic Obser...In this paper the characteristics of Sq variation of geomagnetic field in the region of the Chinese Great Wall Station (CGWS), Antarctica, in winter are analyzed from geomagnetic data obtained at the Geomagnetic Observatory of CGWS. The result enables us to reveal the following aspects: (1) The pattern of Sq variation at CGWS in early (Apr.) and Late winter (Sep.) is similar to that at Beijing Geomagnetic Observatory (BJO) at the middle latitude in the Northern Hemisphere. It may be controlled by the midlatitudinal ionospheric dynamo current. Amplitude of Sq variation is very small, and the harmonics in 8 hours or shorter periods in midwinter (June and July) is predominant because of the decreased effect of solar ultraviolet radiation and the dominant geomagnetic disturbance at high latitudes. (2) The vectors of Sq-equivalent current in the daytime are about five times more than that in the night. The direction of the vectors is clockwise in the daytime (08-15h) and counterclockwise in the night in early and late winter. Both of the vectors are very small because of the effect of the current density in the ionosphere is relatively weak in midwinter. The direction of vectors of Sq-equivalent current at CGWS in early and late winter is different from that in midwinter. It may be affected by the ionospheric current and field-aligned current in the polar region.展开更多
An improved single-π equivalent circuit model for on-chip inductors in the GaAs process is presented in this paper. Considering high order parasites, the model is established by comprising an improved skin effect bra...An improved single-π equivalent circuit model for on-chip inductors in the GaAs process is presented in this paper. Considering high order parasites, the model is established by comprising an improved skin effect branch and a substrate lateral coupling branch. The parameter extraction is based on an improved characteristic function approach and vector fitting method. The model has better simulation than the previous work over the measured data of 2.5r and 4.5r on-chip inductors in the GaAs process.展开更多
基金This work is funded by Natural Science Foundation of Jiangsu Province under Grant BK20160955a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and Science Research Foundation of Nanjing University of Information Science and Technology under Grant 20110430+1 种基金Open Foundation of Jiangsu Key Laboratory of Meteorological Observation and Information Processing(KDXS1304)Open Foundation of Jiangsu Key Laboratory of Ocean Dynamic Remote Sensing and Acoustics(KHYS1405)。
文摘Strapdown non-exchangeable error compensation technology in high dynamic environment is one of the key technologies of strapdown inertial navigation system.Mathematical platform is used in strapdown inertial navigation system instead of physical platform in traditional platform inertial navigation system,which improves reliability and reduces cost and volume of system.The maximum error source of attitude matrix solution is the non-exchangeable error of rotation due to the non-exchangeable of finite rotation of rigid bodies.The rotation non-exchangeable error reaches the maximum in coning motion,although it can be reduced by shortening the correction period and increasing the real-time calculation.The equivalent rotation vector method is used to modify the attitude to reduce the coning error in this paper.Simulation experiments show that the equivalent rotation vector method can effectively suppress the non-exchangeable error and improve the accuracy of attitude calculation.
文摘In this paper the characteristics of Sq variation of geomagnetic field in the region of the Chinese Great Wall Station (CGWS), Antarctica, in winter are analyzed from geomagnetic data obtained at the Geomagnetic Observatory of CGWS. The result enables us to reveal the following aspects: (1) The pattern of Sq variation at CGWS in early (Apr.) and Late winter (Sep.) is similar to that at Beijing Geomagnetic Observatory (BJO) at the middle latitude in the Northern Hemisphere. It may be controlled by the midlatitudinal ionospheric dynamo current. Amplitude of Sq variation is very small, and the harmonics in 8 hours or shorter periods in midwinter (June and July) is predominant because of the decreased effect of solar ultraviolet radiation and the dominant geomagnetic disturbance at high latitudes. (2) The vectors of Sq-equivalent current in the daytime are about five times more than that in the night. The direction of the vectors is clockwise in the daytime (08-15h) and counterclockwise in the night in early and late winter. Both of the vectors are very small because of the effect of the current density in the ionosphere is relatively weak in midwinter. The direction of vectors of Sq-equivalent current at CGWS in early and late winter is different from that in midwinter. It may be affected by the ionospheric current and field-aligned current in the polar region.
基金Project supported by the National Natural Science Foundation of China(No.61674036)
文摘An improved single-π equivalent circuit model for on-chip inductors in the GaAs process is presented in this paper. Considering high order parasites, the model is established by comprising an improved skin effect branch and a substrate lateral coupling branch. The parameter extraction is based on an improved characteristic function approach and vector fitting method. The model has better simulation than the previous work over the measured data of 2.5r and 4.5r on-chip inductors in the GaAs process.