1 wt pct Nd2O3-doped tellurite bulk glass and fiber with the same composition of 75TeO2-15ZnO-5Na2O-5Li2O4(mol fraction, %) were fabricated. Judd-Ofelt analysis was carried out for the bulk. The emission from the 4F3/...1 wt pct Nd2O3-doped tellurite bulk glass and fiber with the same composition of 75TeO2-15ZnO-5Na2O-5Li2O4(mol fraction, %) were fabricated. Judd-Ofelt analysis was carried out for the bulk. The emission from the 4F3/2→4I13/2 transition in fiber is at 1.33 μm wavelength with a spectral bandwidth of 55 nm, which is similar to that in bulk. In the case of the fiber, the lifetime of 4F3/2 Ievel is 164 μs, and the quantum efficiency is -100%. The figure-of-merit for gain (<δpTo) for Nd3+-doped tellurite glass is about 2.8×10-24 cm2·S, which is quite comparable vvith that in Nd3+-doped fluoroaluminate glasses, and is an order of magnitude larger than Pr3+-doped fluoride glasses.展开更多
Based on the host of tellurite glasses, the glass formation, preform manufacture, and fiber fabrication are described. The characterization of amplified spontaneous emission (ASE) from this newly fabricated single-mod...Based on the host of tellurite glasses, the glass formation, preform manufacture, and fiber fabrication are described. The characterization of amplified spontaneous emission (ASE) from this newly fabricated single-mode Er3+-doped tellurite fibers is also presented. When pumped at 980 nm, a very broad erbium ASE around 1.53 μm was observed. The variations of ASE with fiber length and pumping power are measured and discussed. The output of 2 mW from Er3+-doped tellurite fiber ASE source was obtained under the pump power of 660 mW.展开更多
Er^3+/Yb^3+-codoped TeO2-ZnO-BaO-La2O3 tellurite glass fiber was fabricated by rotation and rod-in-tube technologies. The thermal stability and optical refractive index of the core and cladding glasses were determin...Er^3+/Yb^3+-codoped TeO2-ZnO-BaO-La2O3 tellurite glass fiber was fabricated by rotation and rod-in-tube technologies. The thermal stability and optical refractive index of the core and cladding glasses were determined by DTA and optical coupler, respectively. The average background loss of tellurite glass fiber was 1.8 dB/m at 1310 nm. Optical microscopy and field emission scanning electron microscope (FESEM) were used to study structural characteristics of preforms and optical fibers. The main loss of tellurite glass fiber could be attributed to scatter centre due to core-cladding interface defects. The amplifier performance of tellurite glass fiber was investigated by pumping with 980 nm laser diode (LD). The gain coefficient and maximum signal gain were 0.21 dB/mW and 10 dB, respectively, for a pumping power of 120 mW. Gains exceeding 5 dB were obtained over 30 nm bandwidth from 1535 to 1565 nm. The minimum noise figure was 4.8 dB at 1557 nm.展开更多
Fluorescence of Tm^3+/Er^3+ codoped bismuth-silica (BS) glasses and the sensitization of Ce^3+ are investigated, It shows that Ce^3+ codoping with Tm^3+/Er^3+ in BS glasses results in a quenching of Tm^3+ ion...Fluorescence of Tm^3+/Er^3+ codoped bismuth-silica (BS) glasses and the sensitization of Ce^3+ are investigated, It shows that Ce^3+ codoping with Tm^3+/Er^3+ in BS glasses results in a quenching of Tm^3+ ion emission from ^3F4 to the ^3H6 level. Consequently, the 1.47μm emission occurs after the population inversion between the ^3H4 and ^3F4 levels. Furthermore, the codoped glasses show the broad emission spectra over the whole S and C bands with full-width at half-maximum (FWHM) up to about 119nm, as it combines 1.55μm emission band of Er^3+ with 1.47μm emission band of Tm^3+ under 800hm excitation.展开更多
基金This work was supported by the N ational Natural Science Foundation of China(Contract No.60207006)Project of Optical Science and Technology of Shanghai(Contract No.022261046)Science and Technique Qimingxing Fund of Shanghai(No.04QMX1448).
文摘1 wt pct Nd2O3-doped tellurite bulk glass and fiber with the same composition of 75TeO2-15ZnO-5Na2O-5Li2O4(mol fraction, %) were fabricated. Judd-Ofelt analysis was carried out for the bulk. The emission from the 4F3/2→4I13/2 transition in fiber is at 1.33 μm wavelength with a spectral bandwidth of 55 nm, which is similar to that in bulk. In the case of the fiber, the lifetime of 4F3/2 Ievel is 164 μs, and the quantum efficiency is -100%. The figure-of-merit for gain (<δpTo) for Nd3+-doped tellurite glass is about 2.8×10-24 cm2·S, which is quite comparable vvith that in Nd3+-doped fluoroaluminate glasses, and is an order of magnitude larger than Pr3+-doped fluoride glasses.
基金The authors are grateful to the Rising-star Project of Shanghai Municipal Science and Technology Commission(No.04QMX1448)the Project of Optical Science and Technology of Shanghai(No.022261046)the National Natural Science Foundation of China(No.60207006)for the support of this project.
文摘Based on the host of tellurite glasses, the glass formation, preform manufacture, and fiber fabrication are described. The characterization of amplified spontaneous emission (ASE) from this newly fabricated single-mode Er3+-doped tellurite fibers is also presented. When pumped at 980 nm, a very broad erbium ASE around 1.53 μm was observed. The variations of ASE with fiber length and pumping power are measured and discussed. The output of 2 mW from Er3+-doped tellurite fiber ASE source was obtained under the pump power of 660 mW.
基金supported by the Science and Technology Department of Zhejiang Province (2006C21082)K.C.Wong Magna Fund in Ningbo University
文摘Er^3+/Yb^3+-codoped TeO2-ZnO-BaO-La2O3 tellurite glass fiber was fabricated by rotation and rod-in-tube technologies. The thermal stability and optical refractive index of the core and cladding glasses were determined by DTA and optical coupler, respectively. The average background loss of tellurite glass fiber was 1.8 dB/m at 1310 nm. Optical microscopy and field emission scanning electron microscope (FESEM) were used to study structural characteristics of preforms and optical fibers. The main loss of tellurite glass fiber could be attributed to scatter centre due to core-cladding interface defects. The amplifier performance of tellurite glass fiber was investigated by pumping with 980 nm laser diode (LD). The gain coefficient and maximum signal gain were 0.21 dB/mW and 10 dB, respectively, for a pumping power of 120 mW. Gains exceeding 5 dB were obtained over 30 nm bandwidth from 1535 to 1565 nm. The minimum noise figure was 4.8 dB at 1557 nm.
基金Supported by the Natural Science Foundation of Zhejiang Province under Grant No Y104498, the Science and Technology Department of Zhejiang Province under Grant Nos 2005C31014 and 2006C21082.
文摘Fluorescence of Tm^3+/Er^3+ codoped bismuth-silica (BS) glasses and the sensitization of Ce^3+ are investigated, It shows that Ce^3+ codoping with Tm^3+/Er^3+ in BS glasses results in a quenching of Tm^3+ ion emission from ^3F4 to the ^3H6 level. Consequently, the 1.47μm emission occurs after the population inversion between the ^3H4 and ^3F4 levels. Furthermore, the codoped glasses show the broad emission spectra over the whole S and C bands with full-width at half-maximum (FWHM) up to about 119nm, as it combines 1.55μm emission band of Er^3+ with 1.47μm emission band of Tm^3+ under 800hm excitation.