Aerial photographs and 3-D laser scans of a 90-m high star dune at the Crescent Moon Spring scenic spot in Dunhuang,China,are used to investigate the changes in dune morphology on timescales from months to decades.The...Aerial photographs and 3-D laser scans of a 90-m high star dune at the Crescent Moon Spring scenic spot in Dunhuang,China,are used to investigate the changes in dune morphology on timescales from months to decades.The result revealed that relative-equilibrium airflow strength in three wind directions of northeast,west and south was an important condition for the stability of star dunes with limited migration.Transverse and longitudinal airflows exerted a crucial impact on variation processes of star dune morphology.Controlled by transverse airflows,the easterly winds,the east side was dominated by wind erosion;and strong deposition occurred on the south-south-east arm with a maximum deposition rate of 0.44 m/a in the 46-a monitoring period,causing the east side becoming steep and high.Controlled by longitudinal airflows,the westerly winds,the west-north-west side was mainly eroded and the north arm migrated from west to east with a rate of 0.30 m/a,causing the dune slope becoming gentle and elongate.The local air circulation(southerly winds)exerted a significant impact on the development process of the star dune.Due to the influence of human activities,the south side present surface processes from a concave profile to a convex profile in 46 a,which is a potential threat to the Crescent Moon Spring.The results indicate that rehabilitating the airflow field at most is a crucial strategy to the protection of Crescent Moon Spring from burial.Opening up the passage of easterly,westerly and southerly winds through intermediately cutting the protection forest,demolishing the enclosed wall and changing the pavilion into a porous pattern have been suggested to protect the Crescent Moon Spring from burial.展开更多
This study investigated the effect of thermal cycles on Cu-modified Ti64 thin-walled components deposited using the wire-arc directed energy deposition(wire-arc DED)process.For the samples before and after experiencin...This study investigated the effect of thermal cycles on Cu-modified Ti64 thin-walled components deposited using the wire-arc directed energy deposition(wire-arc DED)process.For the samples before and after experiencing thermal cycles,it was found that both microstructures consisted of priorβ,grain boundaryα(GBα),and basketweave structures containingα+βlamellae.Thermal cycles realized the refinement ofαlaths,the coarsening of priorβgrains andβlaths,while the size and morphology of continuously distributed GBαremained unchanged.The residualβcontent was increased after thermal cycles.Compared with the heat-treated sample with nanoscale Ti2Cu formed,short residence time in high temperature caused by the rapid cooling rate of thermal cycles restricted Ti2Cu formation.No formation of brittle Ti2Cu means that only grain refinement strengthening and solid-solution strengthening matter.The yield strength increased from 809.9 to 910.85 MPa(12.46%increase).Among them,the main contribution from solid solution strengthening(~51 MPa)was due to the elemental redistribution effect betweenαandβphases caused by thermal cycles through quantitative analysis.The ultimate tensile strength increased from 918.5 to 974.22 MPa(6.1%increase),while fracture elongation increased from 6.78 to 10.66%(57.23%increase).Grain refinement ofαlaths,the promotedα′martensite decomposition,decreased aspect ratio,decreased Schmid factor,and local misorientation change ofαlaths are the main factors in improved ductility.Additionally,although the fracture modes of the samples in the top and middle regions are both brittle-ductile mixed fracture mode,the thermal cycles still contributed to an improvement in tensile ductility.展开更多
基金funded by the National Natural Science Foundation of China(41271023)
文摘Aerial photographs and 3-D laser scans of a 90-m high star dune at the Crescent Moon Spring scenic spot in Dunhuang,China,are used to investigate the changes in dune morphology on timescales from months to decades.The result revealed that relative-equilibrium airflow strength in three wind directions of northeast,west and south was an important condition for the stability of star dunes with limited migration.Transverse and longitudinal airflows exerted a crucial impact on variation processes of star dune morphology.Controlled by transverse airflows,the easterly winds,the east side was dominated by wind erosion;and strong deposition occurred on the south-south-east arm with a maximum deposition rate of 0.44 m/a in the 46-a monitoring period,causing the east side becoming steep and high.Controlled by longitudinal airflows,the westerly winds,the west-north-west side was mainly eroded and the north arm migrated from west to east with a rate of 0.30 m/a,causing the dune slope becoming gentle and elongate.The local air circulation(southerly winds)exerted a significant impact on the development process of the star dune.Due to the influence of human activities,the south side present surface processes from a concave profile to a convex profile in 46 a,which is a potential threat to the Crescent Moon Spring.The results indicate that rehabilitating the airflow field at most is a crucial strategy to the protection of Crescent Moon Spring from burial.Opening up the passage of easterly,westerly and southerly winds through intermediately cutting the protection forest,demolishing the enclosed wall and changing the pavilion into a porous pattern have been suggested to protect the Crescent Moon Spring from burial.
基金sponsored by the National Key Laboratory Foundation of Science and Technology on Materials under Shock and Impact 2021ZX52002222019the Natural Science Foundation of China(NSFC No.U2141216)the Chongqing Technology Innovation and Application Special Program.
文摘This study investigated the effect of thermal cycles on Cu-modified Ti64 thin-walled components deposited using the wire-arc directed energy deposition(wire-arc DED)process.For the samples before and after experiencing thermal cycles,it was found that both microstructures consisted of priorβ,grain boundaryα(GBα),and basketweave structures containingα+βlamellae.Thermal cycles realized the refinement ofαlaths,the coarsening of priorβgrains andβlaths,while the size and morphology of continuously distributed GBαremained unchanged.The residualβcontent was increased after thermal cycles.Compared with the heat-treated sample with nanoscale Ti2Cu formed,short residence time in high temperature caused by the rapid cooling rate of thermal cycles restricted Ti2Cu formation.No formation of brittle Ti2Cu means that only grain refinement strengthening and solid-solution strengthening matter.The yield strength increased from 809.9 to 910.85 MPa(12.46%increase).Among them,the main contribution from solid solution strengthening(~51 MPa)was due to the elemental redistribution effect betweenαandβphases caused by thermal cycles through quantitative analysis.The ultimate tensile strength increased from 918.5 to 974.22 MPa(6.1%increase),while fracture elongation increased from 6.78 to 10.66%(57.23%increase).Grain refinement ofαlaths,the promotedα′martensite decomposition,decreased aspect ratio,decreased Schmid factor,and local misorientation change ofαlaths are the main factors in improved ductility.Additionally,although the fracture modes of the samples in the top and middle regions are both brittle-ductile mixed fracture mode,the thermal cycles still contributed to an improvement in tensile ductility.