[Objective] Indigenous plants with favorable water and soil conservation effects were screened for the shrub planting.[Method] Suining-Ziyang-Meishan Highway in the hilly areas of central Sichuan Province was taken fo...[Objective] Indigenous plants with favorable water and soil conservation effects were screened for the shrub planting.[Method] Suining-Ziyang-Meishan Highway in the hilly areas of central Sichuan Province was taken for example,through sorting out plant species investigated in the route planning,3 indigenous shrub species(Neosinocalamus affinis,Vitex negundo and Coriaria nepalensis) and 3 indigenous herbaceous species(Setaria viridis,Miscanthus floridulus,Artemisia argyi) were selected.Rainfall simulation experiment was adopted to compare runoff and sediment yields of different combination modes and ratios under constant rainfall intensity(20 mm/min).[Result] Different combination modes under constant rainfall intensity all showed better water and soil conservation effects than that of control group did.For example,runoff appeared 1'-4'05"later,sediment yield reduced by 6.56-33.86 g respectively.Among all combination modes,runoff and sediment yield showed great difference after 20 min of constant rainfall,V.negundo+S.viridis had the lowest runoff(1,700 ml) and sediment yield(60.71 g);C nepalensis+A. argyi had the highest runoff(1,920 ml) and sediment yield(84.02 g).[Conclusion] Given the same planting conditions such as side slope and seeding quantity,and also the same planting techniques,in the hilly areas of central Sichuan Province,the combination of V.negundo and S.viridis can greatly improve the water and soil conservation capacity of highway.展开更多
By scouring experiments, the changeable process and characteristics of sediment yield in the hillslope-gully side erosion system with different coverage degrees and spatial locations of grass were studied. Five grass ...By scouring experiments, the changeable process and characteristics of sediment yield in the hillslope-gully side erosion system with different coverage degrees and spatial locations of grass were studied. Five grass coverage degrees of 0, 30%, 50%, 70%, 90%, three spatial locations of grass (upslope, mid-slope, low-slope) and two water inflow rates of 3.2 L/min, 5.2 L/min were applied to a 0.5 by 7 m soil bed in scouring experiments. Results showed that the sediment yield decreased with the increase of grass coverage degree at 3.2 L/min water inflow rate in scouring experiments and the sediment yield with different grass locations on the sloping surface was in the order of upper 〉 middle 〉 lower. At 5.2 L/min water inflow rate, the differences of sediment yield among various grass coverage degrees were increased, whereas the changeable tendency of sediment yield with different grass locations on the whole sloping surface was not very obvious. The proportion of sediment yield from the gully side increased in an exponential relationship with the increase of grass coverage degree When the grass was located on the lower position of hillslope, the influence for accelerating gully erosion is the greatest.展开更多
Wind and water erosion are among the most important causes of soil loss, and understanding their interactions is important for estimating soil quality and environmental impacts in regions where both types of erosion o...Wind and water erosion are among the most important causes of soil loss, and understanding their interactions is important for estimating soil quality and environmental impacts in regions where both types of erosion occur. We used a wind tunnel and simulated rainfall to study sediment yield, particle-size distribution and the fractal dimension of the sediment particles under wind and water erosion. The experiment was conducted with wind ero- sion firstly and water erosion thereafter, under three wind speeds (0, 11 and 14 m/s) and three rainfall intensities (60, 80 and 100 ram/h). The results showed that the sediment yield was positively correlated with wind speed and rain- fall intensity (P〈0.01). Wind erosion exacerbated water erosion and increased sediment yield by 7.25%-38.97% relative to the absence of wind erosion. Wind erosion changed the sediment particle distribution by influencing the micro-topography of the sloping land surface. The clay, silt and sand contents of eroded sediment were also posi- tively correlated with wind speed and rainfall intensity (P〈0.01). Wind erosion increased clay and silt contents by 0.35%-19.60% and 5.80%-21.10%, respectively, and decreased sand content by 2.40%-8.33%, relative to the absence of wind erosion. The effect of wind erosion on sediment particles became weaker with increasing rainfall intensities, which was consistent with the variation in sediment yield. However, particle-size distribution was not closely correlated with sediment yield (P〉0.05). The fractal dimension of the sediment particles was significantly different under different intensities of water erosion (P〈0.05), but no significant difference was found under wind and water erosion. The findings reported in this study implicated that both water and wind erosion should be controlled to reduce their intensifying effects, and the controlling of wind erosion could significantly reduce water erosion in this wind-water erosion crisscross region.展开更多
Ardak Watershed with an area of about 497 km<sup>2</sup> is one of the tributaries of Kashaf Rud River Watershed in north east Iran,which consists of two main rivers.This catchment is located in the Kopet-...Ardak Watershed with an area of about 497 km<sup>2</sup> is one of the tributaries of Kashaf Rud River Watershed in north east Iran,which consists of two main rivers.This catchment is located in the Kopet-Dagh structural zone and Ardak Watershed is surrounded by Chaman Bid, Mozduran,Shurijeh,Tirgan,and Sarcheshme Formations.The lithofacies and architectural elements show that two main rivers are gravel-bed braided river in their most parts.The major erosion types in this watershed are rock fall,rill,surface erosions,and gully and channel bank erosion.In the study area,the amount of sediment yield estimation in GIS framework using MPSIAC model is about 130.749 m<sup>3</sup>·km<sup>-2</sup>·a<sup>-1</sup>or 1.77 t·h(-1)and most parts of the basin(more than 90%)has low erosional rate.Mozduran and Tirgan Formations展开更多
Collapsing erosion is a unique phenomenon commonly observed on the granite residue hillslopes in the tropical and subtropical regions of southern China,characterized by its abrupt occurrence and significant erosion vo...Collapsing erosion is a unique phenomenon commonly observed on the granite residue hillslopes in the tropical and subtropical regions of southern China,characterized by its abrupt occurrence and significant erosion volumes.However,the impacts of soil crust conditions on the erosion of colluvial deposits with granite residual soils have only been studied to a limited extent.To address this issue,this study investigates the impacts of three soil crust conditions(i.e.,without crust,10-minute crust,and 20-minute crust)on gully morphology,rainfall infiltration,and runoff and sediment yield during slope erosion of colluvial deposits with granite residues(classified as Acrisols)in Yudu County,Ganzhou City,Jiangxi Province,China,using simulated rainfall tests and photographic methods.The results showed that as the strength of the soil crust increased,the capacity of moisture infiltration and the width and depth of the gully as well as the sediment concentration and yield ratio decreased;at the same time,the runoff ratio increased.The sediment yield in the without-crust test was found to be 1.24 and 1.43 times higher than that observed in the 10-minute crust and 20-minute crust tests,respectively.These results indicate that soil crusts can effectively prevent slope erosion and moisture infiltration,while providing valuable insights for the management of soil erosion in natural environments.展开更多
Simulated results of water yield, sediment yield, surface runoff,subsurface runoff, peak flow, evapo- transipiration, etc., in theTeba catchment, Spain, using SWRRB (Simulator for Water Resources inRural Basins) model...Simulated results of water yield, sediment yield, surface runoff,subsurface runoff, peak flow, evapo- transipiration, etc., in theTeba catchment, Spain, using SWRRB (Simulator for Water Resources inRural Basins) model are presented and the related problems arediscussed. The results showed that water yield And sediment yieldcould be satisfactorily simulated using SWRRB model. The accuracy ofthe annual water Yield simulation in the Teba catchment was up to83.68/100, which implied that this method could be effectively Usedto predict the annual or inter-annual water yield and to realize thequantification of geographic elements And processes of a river basin.展开更多
The importance of roots in soil conservation has long been underestimated due to a lack of sys-tematic studies conducted to evaluate root dis-tribution patterns and their effects on soil ero-sion. Current knowledge re...The importance of roots in soil conservation has long been underestimated due to a lack of sys-tematic studies conducted to evaluate root dis-tribution patterns and their effects on soil ero-sion. Current knowledge regarding root mor-phology and its impact on soil erosion by water is limited;therefore, detailed analysis of the role that root systems play in controlling soil ero-sion is needed. In this study, stratified runoff scouring at different soil depths in the field was conducted in a grassland area. The results in-dicated that both root biomass and soil wa-ter-stable aggregates decreased as soil depth increased at all three sites, while there was al-most no change in soil bulk density at 1.3g/cm3. Sediment yields under different runoff dis-charge at different sites showed similar trends, and the sediment yield increased as the soil depth increased at all three sites. Further analysis revealed that close relationships ex-isted between root biomass and the amount of water-stable aggregates and soil organic matter content, and that these factors greatly influ-enced soil erosion. Based on the data generated by the experiment, equations describing the relationship between sediment production at different soil depths and root biomass were determined.展开更多
Soil erosion by water is one of the most important land degradation processes in the sloping rainfed lands in Pakistan. A study was conducted in the Dhrabi watershed of Pakistan to evaluate sediment yield associated w...Soil erosion by water is one of the most important land degradation processes in the sloping rainfed lands in Pakistan. A study was conducted in the Dhrabi watershed of Pakistan to evaluate sediment yield associated with rainfall-runoff under various land-use practices. Five sub-catchments with sizes varying from 1.5 to 350 ha were selected for measurement of rainfall, runoff and sediment yield. Soil conservation techniques were also introduced to reduce the soil erosion. All runoff events occurred in the summer especially during monsoon season (July-September). Sediment yield of two small gully catchments ranged from 4.79 to 8.34 t/ha/yr in 2009, a relatively dry year. In 2010, the annual sediment yield was 8.15 to 12.31 t/ha. Terraced catchment with arable crops produced annual 4.1 t/ha of sediment as compared to 12.31 t/ha by the adjacent gully catchment showing high potential of terraces in reducing erosion. Runoff coefficients calculated for these catchments vary from 0.09 to 0.75. The macro and micro nutrients present in the sediment indicate that these nutrients are being depleted due to soil erosion.展开更多
In order to understand the process of surface erosion and its changing characteristics, a sprinkling experiment is conducted on a bare slope in Mt. Tanakami. Based on the measurements and analysis of runoff, mean soil...In order to understand the process of surface erosion and its changing characteristics, a sprinkling experiment is conducted on a bare slope in Mt. Tanakami. Based on the measurements and analysis of runoff, mean soil erosion depth sediment yield and semiment transport, etc., the characteristics in the process of surface erosion in the experimental area are as follows: the occurrence of sediment discharge is interrupted, with a saturated overland-flow surface runoff; the mean erosion depth is 0.086 2 cm, which is thicker compared with other areas in Mt. Tanakmi; sediment yield is 431. 283 m3·km?2, whose process is detachment-limited, and the type of sediment transport is a sediment flow. Key words runoff - soil erosion depth - sediment yield - sediment transport - Mt. Tanakami CLC number S 157 Biography: ZHAO Wei (1975-), female, Ph. D candidate, Lecturer, now is working in College of Earth Sciences, Jilin University, research dircetion: physical geography, environmental planning and management展开更多
Slope gradient is one of the critically important factors which drive the erosional response of microtopographic surfaces. This study investigates the effect of slope gradient on the evolution of erosion under accumul...Slope gradient is one of the critically important factors which drive the erosional response of microtopographic surfaces. This study investigates the effect of slope gradient on the evolution of erosion under accumulative rainfall in laboratory experiments and calculates critical slope values that help evaluate land suitability for farming and similar purposes. Dynamics of accumulative runoff, accumulated sediment and their rates in each erosion stage are studied when the slope gradient varies. The critical slope value for the microtopographic surface was calculated according to the relationship between the sediment yield and slope gradient. The amount of eroded soil downhill in each erosion stage was calculated using DEM data of point cloud. Results show that 1) a steeper slope would increase cumulative runoff;2) cumulative sediment increases rapidly initially and then stabilizes with the increase of slope;3) the critical slope value for the whole erosion is determined as 10°. The findings of the dynamics of interrill erosion and sediment characteristics are useful information for future research of erosion prediction and conservation of soil and water in the Chinese Loess Plateau.展开更多
In order to understand the process of surface erosion and acquire basic data of conditions on hillslope without vegetation, a sprinkling experiment is conducted on a bare slope in Mt.Tanakami in the central part of Ja...In order to understand the process of surface erosion and acquire basic data of conditions on hillslope without vegetation, a sprinkling experiment is conducted on a bare slope in Mt.Tanakami in the central part of Japan. Based on the measurements of runoff, mean soil erosion depth, and sediment yield, etc., the results suggest the following characteristics in the process of surface erosion in the experimental area. (1) The occurrence of sediment discharge is interrupted; (2) Surface runoff is a saturated overland flow; (3) The mean soil erosion depth is thick compared with other areas in Mt.Tanakami; (4) Sediment discharge process is detachment-limited.展开更多
The slope-gully erosion relationship in small catchments of the middle reaches of the Yellow River has long been a topic concerned by relevant departments in China Slope-gully relationship in typical small catchment i...The slope-gully erosion relationship in small catchments of the middle reaches of the Yellow River has long been a topic concerned by relevant departments in China Slope-gully relationship in typical small catchment is determined determined on the concept of net increase of sediment yield by using analytical method of sediment formation at different positions in the catchment The result shows that sediments in a small catchment in the middle reaches of the Yellow River mainly come from slopes. ms paper indicated that the sediment sources from slopes are roughly 55, 60, 78 and 85 % of the total sediment yield of a small catchment in Yangdaogou. Wangjiagou. Jiuyuangou and Nanxiaohegou, respectively, due to impacts of varying degress from slope runoff.展开更多
The Pisha sandstone-coverd area is among the regions that suffer from the most severe water loss and soil erosion in China and is the main source of coarse sand for the Yellow River. This study demonstrated a new eros...The Pisha sandstone-coverd area is among the regions that suffer from the most severe water loss and soil erosion in China and is the main source of coarse sand for the Yellow River. This study demonstrated a new erosion control method using W-OH solution, a type of hydrophilic polyurethane, to prevent the Pisha sandstone from water erosion. We evaluated the comprehensive effects of W-OH on water erosion resistance and vegetation-growth promotion through simulated scouring tests and field demonstrations on the Ordos Plateau of China. The results of simulated scouring tests show that the water erosion resistance of W-OH treated area was excellent and the cumulative sediment yield reduction reached more than 99%. In the field demonstrations, the vegetation coverage reached approximately 95% in the consolidation-green area, and there was almost no shallow trenches on the entire slope in the treated area. In comparison, the control area experienced severe erosion with deep erosion gullies appeared on the slope and the vegetation coverage was less than 30%. This study illustrated that W-OH treatment can protect the Pisha sandstone from erosion and provide the vegetation seeds a chance to grow. Once the vegetation matured, the effects of consolidation-growth mutual promotion can efficiently and effectively improve the water erosion resistance and ecological restoration.展开更多
Soil Organic Carbon (SOC) is the most important component of soil. Though small, it determines soil fertility and prevents soil losses. In this study, we examined relationships between the Particle-Size Distribution...Soil Organic Carbon (SOC) is the most important component of soil. Though small, it determines soil fertility and prevents soil losses. In this study, we examined relationships between the Particle-Size Distribution (PSD) of the eroded sediment and SOC loss, and evaluated the effects of plant coverage ratios (0%, 15%, 30%, 45%, 60% and 90%), slope lengths (2 m, 4 m), fertilizer treatments (unfertilized control (CK), compound N-P-K fertilizer (CF), and organic fertilizer (OF)) on SOC loss and the SOC enrichment ratio (ERsoc) in the eroded sediments. The experimental results showed that longer slope length and lower surface cover ratios produced larger surface runoff and the eroded sediments, resulting in larger SOC losses. The average SOC loss was greatest in the OF treatment and SOC loss was mainly associated with the eroded sediment. Surface runoff, which causes soil erosion, is a selective transportation process, hence there were more clay- sized particles (〈2 μm) and silt-sized particles (2-50μm) in the eroded sediments than in the original soils. SOC was enriched in the eroded sediments relative to in the original soil when ERsoc 〉 1. ERsoc was positively correlated with ERclay (〈2 pro) (R^2 = o.68) and ERie at (2-20 μm) (R2 = 0.63), and from all the size particle categories of the original soil or the eroded sediments, more than 95% of SOC was concentrated in small-sized partieles (〈50 μm). The distribution of SOC in different-sized particles of the original soil and the eroded sediment is primarily associated with clay-sized part-ides and fine silt-sized particles, thus we eonelude that as the eroded sediment partieles became finer, more SOC was absorbed, resulting in more severe SOC loss.展开更多
Sedimentation is a major problem for agricultural dams in Botswana, as it reduces the storage capacity and life span of the reservoirs. The process of sedimentation starts from day one of the impounding of water in an...Sedimentation is a major problem for agricultural dams in Botswana, as it reduces the storage capacity and life span of the reservoirs. The process of sedimentation starts from day one of the impounding of water in any given reservoir. Even though a provision is made for every reservoir during planning for a certain storage capacity, specifically for sediment deposition, called dead storage, a major portion of the sediment gets deposited for many years of the reservoir’s life in areas other than the dead storage, and this trend cannot be reversed at easy cost. This study is aimed at the analysis of prevailing sedimentation processes in the nearby dozens of dams found in the Lotsane catchment located within the Limpopo Basin of Botswana, and focuses on assessment of annual sedimentation rate. A spatial analysis and modelling study was conducted based on the Revised Universal Soil Loss Equation and GIS to determine sediment yield and degree of impact of each reservoir for a given landscape, rainfall and catchment heterogeneity. Field observations and soil sampling were carried out in order to determine the factors that lead to reservoir sedimentation. Spatial data on the dams in Lotsane catchment were also collected from Ministry of Agriculture, which were used for ground-truthing, GIS-based calculations and model validation. The average sediment rate and sediment delivery ratio were found to be 1.74 t/ha/year and 81%, respectively. These are useful parameters to estimate service life of the dams and plan remedial measures related to sedimentation problems.展开更多
Using empirical model is one of the approaches of evaluating sediment yield. This research is aimed at predicting erosion and sedimentation in Garmiyan area at Kurdistan Region, Iraq used EPM (erosion potential model...Using empirical model is one of the approaches of evaluating sediment yield. This research is aimed at predicting erosion and sedimentation in Garmiyan area at Kurdistan Region, Iraq used EPM (erosion potential model) incorporating into GIS (geographic information system) software. This basin area is about 1,620 km2. It has a range of vegetation, slope, geological, soil texture and land use types. The spatial distribution of gully erosion shows three main zones in the studied area (slight to moderate gully, high gully and sever fluvial erosion). They form about 10%, 89% and 1% of gully erosion in the studied area respectively. The results of the EPM model show that the values of the coefficient of erosion Z are classified as moderate to high erosion intensity. They increase northward due to increasing of slope, elevation and rate of precipitation that generate Hortonian overland flow, which is due to high discharge and huge fluvial erosion power that cause ground surface erosion to produce large quantity of sediment. The results of GSP (spatial sediment rate) are increasing northward similar to Z due the same reasons, while the value of total sediment rate, shows different values for each watershed because they are mainly affected by the total watershed area.展开更多
Soil erosion is an important economic and environmental concern throughout the world. In order to assess soil erosion risk and conserve soil and water resources, soil erosion modeling at the watershed scale is imperat...Soil erosion is an important economic and environmental concern throughout the world. In order to assess soil erosion risk and conserve soil and water resources, soil erosion modeling at the watershed scale is imperative. The Guelph model for evaluating effects of Agricultural Management System on Erosion and Sedimentation (GAMES) is tailor-made for such applications;it, however, requires a significant amount of spatial information which needs to be pre-processed using a Geographic Information System (GIS). The GAMES model currently lacks any such automated tools. As such, the GAMES was loosely coupled to a GIS interface to manage the large spatial input data and to produce efficient cartographic representations of model output results. The developed interface tool was tested to simulate the Kettle Creek paired watershed in Southern Ontario, Canada. Result demonstrated that the GIS-assisted procedure increased the ability of the GAMES model in simulating such a spatially varied watershed and made the process more efficient and user-friendly. Furthermore, the quality of reporting and displaying resultant spatial output was also significantly improved. The developed GAMES interface could be applied to any watershed, and the enhancement could be used to assess soil erosion risk and conserve soil and water resources in an effective way.展开更多
Present study shows suspended sediment dynamics in the meltwater of Chhota Shigri glacier,Himachal Pradesh,India for different melt seasons during the period 2011-2014.Maximum suspended sediment concentration in the m...Present study shows suspended sediment dynamics in the meltwater of Chhota Shigri glacier,Himachal Pradesh,India for different melt seasons during the period 2011-2014.Maximum suspended sediment concentration in the meltwater was found during the month of July 2011,2012 and 2014 constituting to 55.2%,48.3% and 46.9%,respectively.Whereas in 2013,maximum suspended sediment concentration was observed in August accounting for46.1% of the total.On the other hand,maximum suspended sediment load was monitored in the month of July 2011,2012 and 2014 constituting 59.5%,63% and 55.7% of the total,respectively.Whereas in2013,maximum suspended sediment load was observed in the month of August accounting for 49.8% of the total suspended sediment load.Annual distribution of suspended sediment concentration(SSC)and suspended sediment load(SSL)in the Chhota Shigri glacier shows higher value of SSC and SSL during the study period 2012 and 2013,which may be due to the presence of high glacial runoff and negative mass balance of the studied area during these time periods.Marked diurnal variation has been observed in the SSC of meltwater.Strong correlation was observed between SSC and SSL with discharge.On the other hand,SSC and SSL also showed strong exponential correlation with air temperature of the studied area.Sediment yield from the catchment of Chhota Shigri glacier is high during the peak melt season(July and August)and low during the late melt season(September and October).The average value of erosion rate for Chhota Shigri glacier basin during the study period 2011-2014 was calculated to be 1.1mm/yr,which is lower than the average erosion rate of other Himalayan glaciers such as Rakiot,Chorabari and Gangotri glaciers,which may be caused by its geological setting containing high erosion resistant rocks such as granite,granite gneiss and porphyritic granite.展开更多
China has a vast territory with almost all kinds of natural zones, where water erosion exhibits a great areal differentiation, with the sediment yield ranging from less than 100 t/km^2· a to more than 10000 t/km^...China has a vast territory with almost all kinds of natural zones, where water erosion exhibits a great areal differentiation, with the sediment yield ranging from less than 100 t/km^2· a to more than 10000 t/km^2· a. So far the issue remains unsolved concerning the regularity controlling the areal distribution of sediment展开更多
基金Supported by Key Scientific and Technological Program of National"Eleventh Five-year Plan" (2006BAC01A11)"211 Project"Double-support Program of Sichuan Agricultrual University~~
文摘[Objective] Indigenous plants with favorable water and soil conservation effects were screened for the shrub planting.[Method] Suining-Ziyang-Meishan Highway in the hilly areas of central Sichuan Province was taken for example,through sorting out plant species investigated in the route planning,3 indigenous shrub species(Neosinocalamus affinis,Vitex negundo and Coriaria nepalensis) and 3 indigenous herbaceous species(Setaria viridis,Miscanthus floridulus,Artemisia argyi) were selected.Rainfall simulation experiment was adopted to compare runoff and sediment yields of different combination modes and ratios under constant rainfall intensity(20 mm/min).[Result] Different combination modes under constant rainfall intensity all showed better water and soil conservation effects than that of control group did.For example,runoff appeared 1'-4'05"later,sediment yield reduced by 6.56-33.86 g respectively.Among all combination modes,runoff and sediment yield showed great difference after 20 min of constant rainfall,V.negundo+S.viridis had the lowest runoff(1,700 ml) and sediment yield(60.71 g);C nepalensis+A. argyi had the highest runoff(1,920 ml) and sediment yield(84.02 g).[Conclusion] Given the same planting conditions such as side slope and seeding quantity,and also the same planting techniques,in the hilly areas of central Sichuan Province,the combination of V.negundo and S.viridis can greatly improve the water and soil conservation capacity of highway.
基金National Basic Research Program of China,No.2007CB407201National Key Technology R&D Program,No.2006BAB06B01-06Science and Technique Development Foundation of YRIHR,No.200603
文摘By scouring experiments, the changeable process and characteristics of sediment yield in the hillslope-gully side erosion system with different coverage degrees and spatial locations of grass were studied. Five grass coverage degrees of 0, 30%, 50%, 70%, 90%, three spatial locations of grass (upslope, mid-slope, low-slope) and two water inflow rates of 3.2 L/min, 5.2 L/min were applied to a 0.5 by 7 m soil bed in scouring experiments. Results showed that the sediment yield decreased with the increase of grass coverage degree at 3.2 L/min water inflow rate in scouring experiments and the sediment yield with different grass locations on the sloping surface was in the order of upper 〉 middle 〉 lower. At 5.2 L/min water inflow rate, the differences of sediment yield among various grass coverage degrees were increased, whereas the changeable tendency of sediment yield with different grass locations on the whole sloping surface was not very obvious. The proportion of sediment yield from the gully side increased in an exponential relationship with the increase of grass coverage degree When the grass was located on the lower position of hillslope, the influence for accelerating gully erosion is the greatest.
基金financially supported by the Special Program for Basic Research of the Ministry of Science and Technology, China (2014FY210100)the National Natural Science Foundation of China (41171422, 41271298)the West Light Foundation of the Chinese Academy of Sciences
文摘Wind and water erosion are among the most important causes of soil loss, and understanding their interactions is important for estimating soil quality and environmental impacts in regions where both types of erosion occur. We used a wind tunnel and simulated rainfall to study sediment yield, particle-size distribution and the fractal dimension of the sediment particles under wind and water erosion. The experiment was conducted with wind ero- sion firstly and water erosion thereafter, under three wind speeds (0, 11 and 14 m/s) and three rainfall intensities (60, 80 and 100 ram/h). The results showed that the sediment yield was positively correlated with wind speed and rain- fall intensity (P〈0.01). Wind erosion exacerbated water erosion and increased sediment yield by 7.25%-38.97% relative to the absence of wind erosion. Wind erosion changed the sediment particle distribution by influencing the micro-topography of the sloping land surface. The clay, silt and sand contents of eroded sediment were also posi- tively correlated with wind speed and rainfall intensity (P〈0.01). Wind erosion increased clay and silt contents by 0.35%-19.60% and 5.80%-21.10%, respectively, and decreased sand content by 2.40%-8.33%, relative to the absence of wind erosion. The effect of wind erosion on sediment particles became weaker with increasing rainfall intensities, which was consistent with the variation in sediment yield. However, particle-size distribution was not closely correlated with sediment yield (P〉0.05). The fractal dimension of the sediment particles was significantly different under different intensities of water erosion (P〈0.05), but no significant difference was found under wind and water erosion. The findings reported in this study implicated that both water and wind erosion should be controlled to reduce their intensifying effects, and the controlling of wind erosion could significantly reduce water erosion in this wind-water erosion crisscross region.
文摘Ardak Watershed with an area of about 497 km<sup>2</sup> is one of the tributaries of Kashaf Rud River Watershed in north east Iran,which consists of two main rivers.This catchment is located in the Kopet-Dagh structural zone and Ardak Watershed is surrounded by Chaman Bid, Mozduran,Shurijeh,Tirgan,and Sarcheshme Formations.The lithofacies and architectural elements show that two main rivers are gravel-bed braided river in their most parts.The major erosion types in this watershed are rock fall,rill,surface erosions,and gully and channel bank erosion.In the study area,the amount of sediment yield estimation in GIS framework using MPSIAC model is about 130.749 m<sup>3</sup>·km<sup>-2</sup>·a<sup>-1</sup>or 1.77 t·h(-1)and most parts of the basin(more than 90%)has low erosional rate.Mozduran and Tirgan Formations
基金This work was supported by the National Natural Science Foundation of China[Grant Nos.41962015,52208348]the Jiangxi Provincial Natural Science Foundation[Grant No.20224BAB214064,20232BAB204083].
文摘Collapsing erosion is a unique phenomenon commonly observed on the granite residue hillslopes in the tropical and subtropical regions of southern China,characterized by its abrupt occurrence and significant erosion volumes.However,the impacts of soil crust conditions on the erosion of colluvial deposits with granite residual soils have only been studied to a limited extent.To address this issue,this study investigates the impacts of three soil crust conditions(i.e.,without crust,10-minute crust,and 20-minute crust)on gully morphology,rainfall infiltration,and runoff and sediment yield during slope erosion of colluvial deposits with granite residues(classified as Acrisols)in Yudu County,Ganzhou City,Jiangxi Province,China,using simulated rainfall tests and photographic methods.The results showed that as the strength of the soil crust increased,the capacity of moisture infiltration and the width and depth of the gully as well as the sediment concentration and yield ratio decreased;at the same time,the runoff ratio increased.The sediment yield in the without-crust test was found to be 1.24 and 1.43 times higher than that observed in the 10-minute crust and 20-minute crust tests,respectively.These results indicate that soil crusts can effectively prevent slope erosion and moisture infiltration,while providing valuable insights for the management of soil erosion in natural environments.
基金Project (No. B/II-923262) supported by the Marie Curie Research Bursary, European Union.
文摘Simulated results of water yield, sediment yield, surface runoff,subsurface runoff, peak flow, evapo- transipiration, etc., in theTeba catchment, Spain, using SWRRB (Simulator for Water Resources inRural Basins) model are presented and the related problems arediscussed. The results showed that water yield And sediment yieldcould be satisfactorily simulated using SWRRB model. The accuracy ofthe annual water Yield simulation in the Teba catchment was up to83.68/100, which implied that this method could be effectively Usedto predict the annual or inter-annual water yield and to realize thequantification of geographic elements And processes of a river basin.
文摘The importance of roots in soil conservation has long been underestimated due to a lack of sys-tematic studies conducted to evaluate root dis-tribution patterns and their effects on soil ero-sion. Current knowledge regarding root mor-phology and its impact on soil erosion by water is limited;therefore, detailed analysis of the role that root systems play in controlling soil ero-sion is needed. In this study, stratified runoff scouring at different soil depths in the field was conducted in a grassland area. The results in-dicated that both root biomass and soil wa-ter-stable aggregates decreased as soil depth increased at all three sites, while there was al-most no change in soil bulk density at 1.3g/cm3. Sediment yields under different runoff dis-charge at different sites showed similar trends, and the sediment yield increased as the soil depth increased at all three sites. Further analysis revealed that close relationships ex-isted between root biomass and the amount of water-stable aggregates and soil organic matter content, and that these factors greatly influ-enced soil erosion. Based on the data generated by the experiment, equations describing the relationship between sediment production at different soil depths and root biomass were determined.
文摘Soil erosion by water is one of the most important land degradation processes in the sloping rainfed lands in Pakistan. A study was conducted in the Dhrabi watershed of Pakistan to evaluate sediment yield associated with rainfall-runoff under various land-use practices. Five sub-catchments with sizes varying from 1.5 to 350 ha were selected for measurement of rainfall, runoff and sediment yield. Soil conservation techniques were also introduced to reduce the soil erosion. All runoff events occurred in the summer especially during monsoon season (July-September). Sediment yield of two small gully catchments ranged from 4.79 to 8.34 t/ha/yr in 2009, a relatively dry year. In 2010, the annual sediment yield was 8.15 to 12.31 t/ha. Terraced catchment with arable crops produced annual 4.1 t/ha of sediment as compared to 12.31 t/ha by the adjacent gully catchment showing high potential of terraces in reducing erosion. Runoff coefficients calculated for these catchments vary from 0.09 to 0.75. The macro and micro nutrients present in the sediment indicate that these nutrients are being depleted due to soil erosion.
文摘In order to understand the process of surface erosion and its changing characteristics, a sprinkling experiment is conducted on a bare slope in Mt. Tanakami. Based on the measurements and analysis of runoff, mean soil erosion depth sediment yield and semiment transport, etc., the characteristics in the process of surface erosion in the experimental area are as follows: the occurrence of sediment discharge is interrupted, with a saturated overland-flow surface runoff; the mean erosion depth is 0.086 2 cm, which is thicker compared with other areas in Mt. Tanakmi; sediment yield is 431. 283 m3·km?2, whose process is detachment-limited, and the type of sediment transport is a sediment flow. Key words runoff - soil erosion depth - sediment yield - sediment transport - Mt. Tanakami CLC number S 157 Biography: ZHAO Wei (1975-), female, Ph. D candidate, Lecturer, now is working in College of Earth Sciences, Jilin University, research dircetion: physical geography, environmental planning and management
文摘Slope gradient is one of the critically important factors which drive the erosional response of microtopographic surfaces. This study investigates the effect of slope gradient on the evolution of erosion under accumulative rainfall in laboratory experiments and calculates critical slope values that help evaluate land suitability for farming and similar purposes. Dynamics of accumulative runoff, accumulated sediment and their rates in each erosion stage are studied when the slope gradient varies. The critical slope value for the microtopographic surface was calculated according to the relationship between the sediment yield and slope gradient. The amount of eroded soil downhill in each erosion stage was calculated using DEM data of point cloud. Results show that 1) a steeper slope would increase cumulative runoff;2) cumulative sediment increases rapidly initially and then stabilizes with the increase of slope;3) the critical slope value for the whole erosion is determined as 10°. The findings of the dynamics of interrill erosion and sediment characteristics are useful information for future research of erosion prediction and conservation of soil and water in the Chinese Loess Plateau.
文摘In order to understand the process of surface erosion and acquire basic data of conditions on hillslope without vegetation, a sprinkling experiment is conducted on a bare slope in Mt.Tanakami in the central part of Japan. Based on the measurements of runoff, mean soil erosion depth, and sediment yield, etc., the results suggest the following characteristics in the process of surface erosion in the experimental area. (1) The occurrence of sediment discharge is interrupted; (2) Surface runoff is a saturated overland flow; (3) The mean soil erosion depth is thick compared with other areas in Mt.Tanakami; (4) Sediment discharge process is detachment-limited.
文摘The slope-gully erosion relationship in small catchments of the middle reaches of the Yellow River has long been a topic concerned by relevant departments in China Slope-gully relationship in typical small catchment is determined determined on the concept of net increase of sediment yield by using analytical method of sediment formation at different positions in the catchment The result shows that sediments in a small catchment in the middle reaches of the Yellow River mainly come from slopes. ms paper indicated that the sediment sources from slopes are roughly 55, 60, 78 and 85 % of the total sediment yield of a small catchment in Yangdaogou. Wangjiagou. Jiuyuangou and Nanxiaohegou, respectively, due to impacts of varying degress from slope runoff.
基金funded by the National Key Research and Development Program of China (2017YFC0504505)the National Key Technology Support Program of China during the Twelfth Five-year Plan Period (2013BAC05B02, 2013BAC05B04)
文摘The Pisha sandstone-coverd area is among the regions that suffer from the most severe water loss and soil erosion in China and is the main source of coarse sand for the Yellow River. This study demonstrated a new erosion control method using W-OH solution, a type of hydrophilic polyurethane, to prevent the Pisha sandstone from water erosion. We evaluated the comprehensive effects of W-OH on water erosion resistance and vegetation-growth promotion through simulated scouring tests and field demonstrations on the Ordos Plateau of China. The results of simulated scouring tests show that the water erosion resistance of W-OH treated area was excellent and the cumulative sediment yield reduction reached more than 99%. In the field demonstrations, the vegetation coverage reached approximately 95% in the consolidation-green area, and there was almost no shallow trenches on the entire slope in the treated area. In comparison, the control area experienced severe erosion with deep erosion gullies appeared on the slope and the vegetation coverage was less than 30%. This study illustrated that W-OH treatment can protect the Pisha sandstone from erosion and provide the vegetation seeds a chance to grow. Once the vegetation matured, the effects of consolidation-growth mutual promotion can efficiently and effectively improve the water erosion resistance and ecological restoration.
基金funded by Water and Soil Conservation Monitoring Technology Innovation Team and Construction of China(Grant No.2009F20022)National Natural Science Foundation of China(Grant No.41471221)
文摘Soil Organic Carbon (SOC) is the most important component of soil. Though small, it determines soil fertility and prevents soil losses. In this study, we examined relationships between the Particle-Size Distribution (PSD) of the eroded sediment and SOC loss, and evaluated the effects of plant coverage ratios (0%, 15%, 30%, 45%, 60% and 90%), slope lengths (2 m, 4 m), fertilizer treatments (unfertilized control (CK), compound N-P-K fertilizer (CF), and organic fertilizer (OF)) on SOC loss and the SOC enrichment ratio (ERsoc) in the eroded sediments. The experimental results showed that longer slope length and lower surface cover ratios produced larger surface runoff and the eroded sediments, resulting in larger SOC losses. The average SOC loss was greatest in the OF treatment and SOC loss was mainly associated with the eroded sediment. Surface runoff, which causes soil erosion, is a selective transportation process, hence there were more clay- sized particles (〈2 μm) and silt-sized particles (2-50μm) in the eroded sediments than in the original soils. SOC was enriched in the eroded sediments relative to in the original soil when ERsoc 〉 1. ERsoc was positively correlated with ERclay (〈2 pro) (R^2 = o.68) and ERie at (2-20 μm) (R2 = 0.63), and from all the size particle categories of the original soil or the eroded sediments, more than 95% of SOC was concentrated in small-sized partieles (〈50 μm). The distribution of SOC in different-sized particles of the original soil and the eroded sediment is primarily associated with clay-sized part-ides and fine silt-sized particles, thus we eonelude that as the eroded sediment partieles became finer, more SOC was absorbed, resulting in more severe SOC loss.
文摘Sedimentation is a major problem for agricultural dams in Botswana, as it reduces the storage capacity and life span of the reservoirs. The process of sedimentation starts from day one of the impounding of water in any given reservoir. Even though a provision is made for every reservoir during planning for a certain storage capacity, specifically for sediment deposition, called dead storage, a major portion of the sediment gets deposited for many years of the reservoir’s life in areas other than the dead storage, and this trend cannot be reversed at easy cost. This study is aimed at the analysis of prevailing sedimentation processes in the nearby dozens of dams found in the Lotsane catchment located within the Limpopo Basin of Botswana, and focuses on assessment of annual sedimentation rate. A spatial analysis and modelling study was conducted based on the Revised Universal Soil Loss Equation and GIS to determine sediment yield and degree of impact of each reservoir for a given landscape, rainfall and catchment heterogeneity. Field observations and soil sampling were carried out in order to determine the factors that lead to reservoir sedimentation. Spatial data on the dams in Lotsane catchment were also collected from Ministry of Agriculture, which were used for ground-truthing, GIS-based calculations and model validation. The average sediment rate and sediment delivery ratio were found to be 1.74 t/ha/year and 81%, respectively. These are useful parameters to estimate service life of the dams and plan remedial measures related to sedimentation problems.
文摘Using empirical model is one of the approaches of evaluating sediment yield. This research is aimed at predicting erosion and sedimentation in Garmiyan area at Kurdistan Region, Iraq used EPM (erosion potential model) incorporating into GIS (geographic information system) software. This basin area is about 1,620 km2. It has a range of vegetation, slope, geological, soil texture and land use types. The spatial distribution of gully erosion shows three main zones in the studied area (slight to moderate gully, high gully and sever fluvial erosion). They form about 10%, 89% and 1% of gully erosion in the studied area respectively. The results of the EPM model show that the values of the coefficient of erosion Z are classified as moderate to high erosion intensity. They increase northward due to increasing of slope, elevation and rate of precipitation that generate Hortonian overland flow, which is due to high discharge and huge fluvial erosion power that cause ground surface erosion to produce large quantity of sediment. The results of GSP (spatial sediment rate) are increasing northward similar to Z due the same reasons, while the value of total sediment rate, shows different values for each watershed because they are mainly affected by the total watershed area.
文摘Soil erosion is an important economic and environmental concern throughout the world. In order to assess soil erosion risk and conserve soil and water resources, soil erosion modeling at the watershed scale is imperative. The Guelph model for evaluating effects of Agricultural Management System on Erosion and Sedimentation (GAMES) is tailor-made for such applications;it, however, requires a significant amount of spatial information which needs to be pre-processed using a Geographic Information System (GIS). The GAMES model currently lacks any such automated tools. As such, the GAMES was loosely coupled to a GIS interface to manage the large spatial input data and to produce efficient cartographic representations of model output results. The developed interface tool was tested to simulate the Kettle Creek paired watershed in Southern Ontario, Canada. Result demonstrated that the GIS-assisted procedure increased the ability of the GAMES model in simulating such a spatially varied watershed and made the process more efficient and user-friendly. Furthermore, the quality of reporting and displaying resultant spatial output was also significantly improved. The developed GAMES interface could be applied to any watershed, and the enhancement could be used to assess soil erosion risk and conserve soil and water resources in an effective way.
基金DST (Department of Science and Technology), Govt. of India for financial support for this research projectSERB, DST, Government of India for awarding NPDF (National Postdoctoral Fellowship) (Reference No. PDF/2016/000286)the partial funding given to this project by GLACINDIA, CHARIS, INDICE, IFCPAR/CEFIPRA and SAC
文摘Present study shows suspended sediment dynamics in the meltwater of Chhota Shigri glacier,Himachal Pradesh,India for different melt seasons during the period 2011-2014.Maximum suspended sediment concentration in the meltwater was found during the month of July 2011,2012 and 2014 constituting to 55.2%,48.3% and 46.9%,respectively.Whereas in 2013,maximum suspended sediment concentration was observed in August accounting for46.1% of the total.On the other hand,maximum suspended sediment load was monitored in the month of July 2011,2012 and 2014 constituting 59.5%,63% and 55.7% of the total,respectively.Whereas in2013,maximum suspended sediment load was observed in the month of August accounting for 49.8% of the total suspended sediment load.Annual distribution of suspended sediment concentration(SSC)and suspended sediment load(SSL)in the Chhota Shigri glacier shows higher value of SSC and SSL during the study period 2012 and 2013,which may be due to the presence of high glacial runoff and negative mass balance of the studied area during these time periods.Marked diurnal variation has been observed in the SSC of meltwater.Strong correlation was observed between SSC and SSL with discharge.On the other hand,SSC and SSL also showed strong exponential correlation with air temperature of the studied area.Sediment yield from the catchment of Chhota Shigri glacier is high during the peak melt season(July and August)and low during the late melt season(September and October).The average value of erosion rate for Chhota Shigri glacier basin during the study period 2011-2014 was calculated to be 1.1mm/yr,which is lower than the average erosion rate of other Himalayan glaciers such as Rakiot,Chorabari and Gangotri glaciers,which may be caused by its geological setting containing high erosion resistant rocks such as granite,granite gneiss and porphyritic granite.
基金Project supported by the National Natural Science Foundation of China.
文摘China has a vast territory with almost all kinds of natural zones, where water erosion exhibits a great areal differentiation, with the sediment yield ranging from less than 100 t/km^2· a to more than 10000 t/km^2· a. So far the issue remains unsolved concerning the regularity controlling the areal distribution of sediment