In most coastal and estuarine areas,tides easily cause surface erosion and even slope failure,resulting in severe land losses,deterioration of coastal infrastructure,and increased floods.The bio-cementation technique ...In most coastal and estuarine areas,tides easily cause surface erosion and even slope failure,resulting in severe land losses,deterioration of coastal infrastructure,and increased floods.The bio-cementation technique has been previously demonstrated to effectively improve the erosion resistance of slopes.Seawater contains magnesium ions(Mg^(2+))with a higher concentration than calcium ions(Ca^(2+));therefore,Mg^(2+)and Ca^(2+)were used together for bio-cementation in this study at various Mg^(2+)/Ca^(2+)ratios as the microbially induced magnesium and calcium precipitation(MIMCP)treatment.Slope angles,surface strengths,precipitation contents,major phases,and microscopic characteristics of precipitation were used to evaluate the treatment effects.Results showed that the MIMCP treatment markedly enhanced the erosion resistance of slopes.Decreased Mg^(2+)/Ca^(2+)ratios resulted in a smaller change in angles and fewer soil losses,especially the Mg^(2+)concentration below 0.2 M.The decreased Mg^(2+)/Ca^(2+)ratio achieved increased precipitation contents,which contributed to better erosion resistance and higher surface strengths.Additionally,the production of aragonite would benefit from elevated Mg^(2+)concentrations and a higher Ca^(2+)concentration led to more nesquehonite in magnesium precipitation crystals.The slopes with an initial angle of 53°had worse erosion resistance than the slopes with an initial angle of 35°,but the Mg^(2+)/Ca^(2+)ratios of 0.2:0.8,0.1:0.9,and 0:1.0 were effective for both slope stabilization and erosion mitigation to a great extent.The results are of great significance for the application of MIMCP to improve erosion resistance of foreshore slopes and the MIMCP technique has promising application potential in marine engineering.展开更多
With the intensification of global climate change and the worsening of land degradation,desertification has emerged as a significant global issue threatening ecosystems and human activities.The technique of Microbial ...With the intensification of global climate change and the worsening of land degradation,desertification has emerged as a significant global issue threatening ecosystems and human activities.The technique of Microbial Induced Calcium Carbonate Precipitation(MICP)has been widely applied in soil stabilization and engineering geology in recent years.This study conducts experiments using Bacillus megaterium to solidify desert sand via MICP,aiming to explore its feasibility as a novel ecological method for desert protection.Experimental results indicate that desert sand treated with MICP exhibits a significant enhancement in wind erosion resistance,providing a potential solution for desert management and land restoration.展开更多
A columnar Al film was firstly deposited on the top of 7%Y2O3?stabilized zirconia (7YSZ) ceramic coating in thermal barrier coating (TBC) system by magnetron sputtering. A vacuum treatment was then carried out at...A columnar Al film was firstly deposited on the top of 7%Y2O3?stabilized zirconia (7YSZ) ceramic coating in thermal barrier coating (TBC) system by magnetron sputtering. A vacuum treatment was then carried out at 700 °C for 1 h and 900 °C for 5 h to improve the erosion resistance of Al-deposited TBC. Aα-Al2O3 layer was in situ synthesized on the top of 7YSZ coating via vacuum heat treatment. The microstructure evolution of Al-deposited TBC illustrated that a loose surface-layer and a dense sub-layer formed on the top of 7YSZ coating after vacuum treatment. The phase structures of the as-sprayed TBC and the Al-deposited TBC after vacuum heat treatment were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM) assisted with focused ion beam (FIB). Particulate erosion resistances of the as-sprayed TBC and treated TBC were compared at room temperature. In addition, erosion mechanism and schematic diagram were proposed. The results show that the Al-deposited TBC after vacuum heat treatment has better particulate erosion resistance than the as-sprayed one.展开更多
Effect of rare earth elements (RE) on erosion resistance of nitrocarburized layer of 38CrMoAl steel was investigated. The results indicate that significant improvement occurs in erosion resistance of nitrocarburized 3...Effect of rare earth elements (RE) on erosion resistance of nitrocarburized layer of 38CrMoAl steel was investigated. The results indicate that significant improvement occurs in erosion resistance of nitrocarburized 38CrMoAl steel by introducing RE during nitrocarburizing processing as compared with conventional nitrocarburizing processing. Results of mechanical testing show that both hardness and impact toughness of RE-nitrocarburizing layer of 38CrMoAl steel increase as compared with the conventional one. Optical microscopy reveals that there is improvement in the nitrocarburized layer attributed to the introduction of RE, which results in improvement in erosion resistance. Surface morphology observation of tested samples reveals that predominantly furrow-like peelings from plastic deformation are observed for RE nitrocarburizied 38CrMoAl steel, while the furrow-like peeling with initial cross crack and large grinding peelings were observed for conventionally nitrocarburized samples.展开更多
Effects of alloying elements on microstructure and erosion resistance of Fe-C-Cr weld surfacing layer have been studied. The experimental results show that increasing C and Cr content favors improving the erosion resi...Effects of alloying elements on microstructure and erosion resistance of Fe-C-Cr weld surfacing layer have been studied. The experimental results show that increasing C and Cr content favors improving the erosion resistance of the layer, and the excessive C and Cr result in decreasing the erosion resistance at 90 deg. erosion. That Mo, Nb or Ti improves the erosion resistance of Fe-C-Cr weld surfacing layer is mainly attributed to increasing the amount of M7C3 and forming fine NbC or TiC in austenite matrix, but the excessive Mo, Nb or Ti is unfavorable. The addition of Mo, Nb and Ti in proper combination possesses stronger effect on improving the erosion resistance and the erosion resistance (εA) of Fe-C-Cr weld surfacing layer with fine NbC, TiC and M7C3 distributing uniformly in austenite matrix obviously increases to 2.81 at 15 deg. erosion and 2.88 at 90 deg. erosion when the layer composition is 3.05C, 20.58Cr, 1.88Mo, 2.00Nb and 1.05Ti (in wt pct).展开更多
BNp/Al2O3-SiO2 system ceramic matrix composites with different volume fractions (10%-60%) of hexagonal BN particulates (BNp) were prepared by hot-press sintering technique. Phase components, microstructure, mechan...BNp/Al2O3-SiO2 system ceramic matrix composites with different volume fractions (10%-60%) of hexagonal BN particulates (BNp) were prepared by hot-press sintering technique. Phase components, microstructure, mechanical properties and plasma erosion resistance were also investigated. With the increase of h-BNp content, relative density and Vickers' hardness of the composite ceramics decrease, while the flexural strength, elastic modulus and fracture toughness increase and then decrease. The plasma erosion resistance linearly deteriorated with the increase of BNp content which is mainly determined by the density, crystal structure and atomic number of the elements.展开更多
Cavitation erosion (CE) is the predominant cause for the failure of overflow components in fluid machinery. Advanced coatings have provided an effective solution to cavitation erosion due to the rapid development of...Cavitation erosion (CE) is the predominant cause for the failure of overflow components in fluid machinery. Advanced coatings have provided an effective solution to cavitation erosion due to the rapid development of surface engineering techniques. However, the influence of coating structures on CE resistance has not been sys- tematically studied. To better understand their relationship, micro-nano and conventional WC-10Co4Cr cermet coat- ings are deposited by high velocity oxygen fuel spray- ing(HVOF), and their microstructures are analyzed by OM, SEM and XRD. Meanwhile, characterizations of mechan- ical and electrochemical properties of the coatings are carried out, as well as the coatings' resistance to CE in 3.5 wt % NaC1 solution, and the cavitation mechanisms are explored. Results show that micro-nano WC-10Co4Cr coating possesses dense microstructure, excellent mechanical and electrochemical properties, with very low porosity of 0.26 4-0.07% and extraordinary fracture toughness of 5.58 4-0.51 MPa.m1/2. Moreover, the CE resistance of micro-nano coating is enhanced above 50% than conventional coating at the steady CE period in 3.5 wt % NaC1 solution. The superior CE resistance of micro- nano WC-10Co4Cr coating may originate from the unique micro-nano structure and properties, which can effectively obstruct the formation and propagation of CE crack. Thus,a new method is proposed to enhance the CE resistance of WC-10Co4Cr coating by manipulating the microstructure.展开更多
WCp/NiCrBSi composite coatings have been deposited by plasma spraying with the mixed powders of WC-12Ni and NiCrBSi. The coatings consist mainly of WC, γ-Ni, Ni3B, CrB, Cr2B, M7C3, M23C6 and W2C phases. The W2C conte...WCp/NiCrBSi composite coatings have been deposited by plasma spraying with the mixed powders of WC-12Ni and NiCrBSi. The coatings consist mainly of WC, γ-Ni, Ni3B, CrB, Cr2B, M7C3, M23C6 and W2C phases. The W2C content increases with increasing WC mass fraction in the powders. The porosity and microhardness of the coatings are related to the coating WC content. The excessive WC results in decreasing the microhardness due to increasing the porosity. The WCp/ NiCrBSi coating with 35 % WC mass fraction powder has more excellent erosion resistance. With an increase of impact angles from 15° to 90° the erosion rate of the coating increases, the erosion rate at 15° impact angle being approximately two times lower than that at 90° impact angle. Based on the wear morphology of the coatings at different impact angles, the wear mechanisms were discussed.展开更多
Fe C Cr weld surfacing layers with different compositions and microstructures can be obtained by submerged arc welding with welding wire of the low carbon steel and high alloy bonded flux. With the increase of Cr an...Fe C Cr weld surfacing layers with different compositions and microstructures can be obtained by submerged arc welding with welding wire of the low carbon steel and high alloy bonded flux. With the increase of Cr and C in the layers the microstructures are changed from hypoeutectoid steel, hypereutectoid steel to hypoeutectic iron and hypereutectic iron. When the weld surfacing layers belong to the alloyed cast irons the erosion resistance can be raised with the eutectic increase and the austenite decrease. Good erosion resistance can be obtained when the proportion of the primary carbides is within 10 %. The experimental results lay a foundation to make double metal percussive plates by surfacing wear resistant layers on the substrates of the low carbon steels.展开更多
Along with the reduction of sediment yield of the Huanghe (Yellow) River, the erosion of the Huanghe River Delta aggravates, which has becomes an important factor that threatens the coastal protection structures. St...Along with the reduction of sediment yield of the Huanghe (Yellow) River, the erosion of the Huanghe River Delta aggravates, which has becomes an important factor that threatens the coastal protection structures. Starting from the study of the erosion resistibility of the sediment, this paper explores the internal mechanism of erosion phenomenon. This paper takes Diaokou as the study area and takes soils as samples which are mixed with clay into reconstructed samples whose ratio of clay content are 5%, 10%, 15%, 20% respectively, then dynamic tri-axial apparatus is applied to simulate wave loads of different intensity; then the resistibility of soil to erosion is determined via concentrated flow test and the structural property is determined via the disintegration test. Finally, the resistibility to erosion and the structural property of the non-compressed soil samples are compared with the compressed data. The results indicates that liquefaction failure exerts significant influence on the resistibility to erosion and the structural property of the silty soil in the Huanghe River Delta. Therefore, in the future erosion studies, the liquefaction phenomenon shall be fully considered.展开更多
The thermal shock resistance and anti- aluminum erosion of TiB2 - BN multiphase ceramics composites were studied. The experimental results show that the TiB2-BN multiphase ceramic possesses a good thermal shock resist...The thermal shock resistance and anti- aluminum erosion of TiB2 - BN multiphase ceramics composites were studied. The experimental results show that the TiB2-BN multiphase ceramic possesses a good thermal shock resistance at high temperatures ( 1000, 1200, 1400, 1500 ℃ ), with the increasing in thermal shocking temperature, the electro-conductivity of TiB2-BN ceramics increases. The metal aluminum has a great influence on the properties of TiB2 - BN ceramics and the main reason is that the aluminum reacts seriously with BN. It is suggested that the content of BN should be reduced to the greatest extent.展开更多
Considering the economic and environmental benefits associated with the recycling of polyester(PET)fibres,it is vital to study the application of fibre-reinforced cement composites.According to the characteristics of ...Considering the economic and environmental benefits associated with the recycling of polyester(PET)fibres,it is vital to study the application of fibre-reinforced cement composites.According to the characteristics of the wind-blown sand environment in Inner Mongolia,the erosion resistance of the polyester fibre-reinforced cement composites(PETFRCC)with different PET fibre contents to various erosion angles,velocities and sand particle flows was investigated by the gas-blast method.Based on the actual conditions of sandstorms in Inner Mongolia,the sand erosion parameters required for testing were calculated by the similarity theory.The elastic-plastic model and rigid plastic model of PETFRCC and cement mortar were established,and the energy consumption mechanism of the model under particle impact was analyzed.The experimental results indicate that the microstructure of PETFRCC rafter hydration causes a spring-like buffering effect,and the deformation of PETFRCC under the same impact load is slightly smaller than that of cement mortar,and the damage mechanism of PETFRCC is mainly characterized by fiber deformation and slight brittle spalling of matrix.And under the most unfavorable conditions of the erosion,the erosion rate of 0.5PETFRCC is about 57.69%lower than that of cement mortar,showing better erosion resistance.展开更多
The erosion resistance tests were used to research the erosion wear behavior of CaO-Al-2O-3-SiO-2 system glass-ceramic. With the orthogonal test method, the factors that affect the erosion wear of CaO-Al-2O-3-SiO-2 sy...The erosion resistance tests were used to research the erosion wear behavior of CaO-Al-2O-3-SiO-2 system glass-ceramic. With the orthogonal test method, the factors that affect the erosion wear of CaO-Al-2O-3-SiO-2 system glass-ceramic such as particles property, impact angle, impact time, size of particles were discussed.The results show that erosion rate rises along a straight line at the early period of erosion wear.With the impact time increased,the erosion rate deviates from original staight line,tendency of the erosion rate increases.With the size of paricle increased,it will have more kinetic energy,the erosion rate of the surface of glass-ceramics ploate rises.展开更多
The arc erosion under medium direct currents in the argon flow was tested on tungsten-copper(W-Cu) contacts which were processed by hot extrusion and heat treatment. The scanning electron microscopy(SEM) and trans...The arc erosion under medium direct currents in the argon flow was tested on tungsten-copper(W-Cu) contacts which were processed by hot extrusion and heat treatment. The scanning electron microscopy(SEM) and transmission electron microscopy(TEM) were used to study the microstructure of the W-Cu powders and compacts. The contact resistance, arcing energy, and arcing time were continuously measured by JF04C contact materials test system. Changes in tungsten-copper contact surface were observed by SEM. The test results showed that the arcing time and arcing energy all increase with current and voltage, but the changes of average contact resistance are more complicated. For a short arcing time, the average contact resistance decreases with increasing current due to the vaporization of Cu. However, for a longer arcing time, it slightly increases due to the formation of high resistant films, compound copper tungsten. The formation of compound copper tungsten was confirmed by the increased Rc kept in the range from 1.1 to 1.6 mΩ. The compound copper tungsten is first exposed with a tungsten and copper-rich surface, and then totally exposed due to evaporation of copper from the surface. At last a stabilized surface is created and the crystals decrease from 8 μm to 2 μm caused by the arc erosion.展开更多
Two-dimensional carbon/carbon(2D C/C)composites are a special class of carbon/carbon composites,generally obtained by combining resin-impregnated carbon fiber clothes,which are then cured and carbonized.This study dea...Two-dimensional carbon/carbon(2D C/C)composites are a special class of carbon/carbon composites,generally obtained by combining resin-impregnated carbon fiber clothes,which are then cured and carbonized.This study deals with the preparation of a protective coating for these materials.This coating,based on graphite,was prepared by the slurry method.The effect of graphite and phenolic resin powders with different weight ratios was examined.The results have shown that the coating slurry can fill the pores and cracks of the composite surface,thereby densifying the surface layer of the material.With the increase of the graphite powder/phenolic resin weight ratio,the coating density is enhanced while the coating surface flatness decreases;moreover,the protective ability of coating against erosion first increases(from 1:3 to 2:2)and then decreases(from 2:2 to 3:1).When the weight ratio is about 1:1,the coating for 2D C/C composites exhibits the best erosion resistance,which greatly aids these materials during gas quenching.In this case,the erosion rate is decreased by approximately 41.5%at the impact angle of 30°and 52.3%at normal impact,respectively.This can be attributed to the ability of the coating slurry to infiltrate into the substrate,thereby bonding the fibers together and increasing the compactness of the 2D C/C composites.展开更多
Ti/TiN/Zr/ZrN multilayer coatings were deposited on Cr_17Ni_2 steel substrates with different surface roughnesses by vacuum cathodic arc deposition method. Microstructure, micro-hardness, adhesion strength and cross-s...Ti/TiN/Zr/ZrN multilayer coatings were deposited on Cr_17Ni_2 steel substrates with different surface roughnesses by vacuum cathodic arc deposition method. Microstructure, micro-hardness, adhesion strength and cross-sectional morphology of the obtained multilayer coatings were investigated. The results show that the Vickers hardness of Ti/TiN/Zr/ZrN multilayer coating, with a film thickness of 11.37 μm, is 29.36 GPa. The erosion and salt spray resistance performance of Cr_17Ni_2 steel substrates can be evidently improved by Ti/TiN/Zr/ZrN multilayer coating. The surface roughness of Cr_17Ni_2 steel substrates plays an important role in determining the mechanical and erosion performances of Ti/TiN/Zr/ZrN multilayer coatings. Overall, a low value of the surface roughness of substrates corresponds to an improved performance of erosion and salt spray resistance of multilayer coatings. The optimized performance of Ti/TiN/Zr/ZrN multilayer coatings can be achieved provided that the surface roughness of Cr_17Ni_2 steel substrates is lower than 0.4μm.展开更多
Biological soil crusts(biocrusts)are important landscape components that exist in various climates and habitats.The roles of biocrusts in numerous soil processes have been predominantly recognized in many dryland regi...Biological soil crusts(biocrusts)are important landscape components that exist in various climates and habitats.The roles of biocrusts in numerous soil processes have been predominantly recognized in many dryland regions worldwide.However,little is known about their effects on soil detachment process by overland flow,especially in humid climates.This study quantified the effects of moss-dominated biocrusts on soil detachment capacity(Dc)and soil erosion resistance to flowing water in the Three Gorges Reservoir Area which holds a subtropical humid climate.Potential factors driving soil detachment variation and their influencing mechanism were analyzed and elucidated.We designed five levels of coverage treatments(1%–20%,20%–40%,40%–60%,60%–80%,and 80%–100%)and a nearby bare land as control in a mossdominated site.Undisturbed soil samples were taken and subjected to water flow scouring in a hydraulic flume under six shear stresses ranging from 4.89 to 17.99 Pa.The results indicated that mean Dc of mosscovered soil varied from 0.008 to 0.081 kg m^-2 s^-1,which was 1.9 to 21.0 times lower than that of bare soil(0.160 kg m^-2 s^-1).Rill erodibility(Kr)of mosscovered soil ranged from 0.0095 to 0.0009 s m^-1,which was 2 to 20 times lower than that of bare soil(0.0187 s m^-1).Both relative soil detachment rate and Kr showed an exponential decay with increasing moss coverage,whereas the critical shear stress(τc)for different moss coverage levels did not differ significantly.Moss coverage,soil cohesion,and sand content were key factors affecting Dc,while moss coverage and soil bulk density were key factors affecting Kr.A power function of flow shear stress,soil cohesion,and moss coverage fitted well to estimate Dc(NSE=0.947).Our findings implied that biocrusts prevented soil detachment directly by their physical cover and indirectly by soil properties modification.Biocrusts could be rehabilitated as a promising soil conservation measure during ecological recovery to enhance soil erosion resistance in the Three Gorges Reservoir Area.展开更多
The Pisha sandstone-coverd area is among the regions that suffer from the most severe water loss and soil erosion in China and is the main source of coarse sand for the Yellow River. This study demonstrated a new eros...The Pisha sandstone-coverd area is among the regions that suffer from the most severe water loss and soil erosion in China and is the main source of coarse sand for the Yellow River. This study demonstrated a new erosion control method using W-OH solution, a type of hydrophilic polyurethane, to prevent the Pisha sandstone from water erosion. We evaluated the comprehensive effects of W-OH on water erosion resistance and vegetation-growth promotion through simulated scouring tests and field demonstrations on the Ordos Plateau of China. The results of simulated scouring tests show that the water erosion resistance of W-OH treated area was excellent and the cumulative sediment yield reduction reached more than 99%. In the field demonstrations, the vegetation coverage reached approximately 95% in the consolidation-green area, and there was almost no shallow trenches on the entire slope in the treated area. In comparison, the control area experienced severe erosion with deep erosion gullies appeared on the slope and the vegetation coverage was less than 30%. This study illustrated that W-OH treatment can protect the Pisha sandstone from erosion and provide the vegetation seeds a chance to grow. Once the vegetation matured, the effects of consolidation-growth mutual promotion can efficiently and effectively improve the water erosion resistance and ecological restoration.展开更多
Accurately calculating detachment capacity is the most fundamental issue when establishing a soil erosion process model.Colluvial deposits of Benggang are typical soil-gravel mixtures,whereas the understanding of the ...Accurately calculating detachment capacity is the most fundamental issue when establishing a soil erosion process model.Colluvial deposits of Benggang are typical soil-gravel mixtures,whereas the understanding of the soil detachment of colluvial deposits is limited.This work investigated the effects of the gravel contents on the soil detachment capacity of colluvial deposits and its hydrodynamic mechanism.The colluvial sample was collected in Anxi County,Fujian Province,Southeast China,and a small-sample scouring test was used.The slope steepness ranged from 18%to 84%,unit discharge ranged from 0.56×10^(-3)to 2.22×10^(-3)m^(2)s^(-1),and gravel content ranged from 0%to 70%.The results indicated that the gravel content is the primary factor that influences the detachment capacity,followed by the discharge and then the slope.The detachment capacity trend with the gravel content varied over different slopes and discharges.Stream power represents the best hydrodynamic parameter for modelling the detachment capacity of colluvial deposits and can be used to establish a fitting equation for the colluvium together with the mean weight diameter(MWD)(Nash-Sutcliffe efficiency(NSE)=0.96).As the gravel content increased,the soil erodibility parameters increased several folds,in some cases more than 10 folds,mainly because the soil shear strength decreased gradually.Meanwhile,as the gravel content increased,the gravel specific surface area increased,the obstruction of gravel to runoff increased,and the energy needed for runoff to overcome gravel obstruction increased,leading to 2-3 folds higher critical shear stress of runoff for soilgravel mixtures compared with pure soil.In summary,gravel can influence the detachment capacity by changing the soil properties,and the gravel content also affects the relationship between soil detachment capacity and the hydrodynamic parameters.These findings deepen the understanding of the influence of gravel on soil erosion and provide a basis for establishing a soil erosion process model in colluvial deposits.展开更多
A new approach which adopted the idea of coupling bionics to improve erosion resistance was presented, by taking the desert scorpion as the research object. The anti-erosion characteristic rules and mechanism of deser...A new approach which adopted the idea of coupling bionics to improve erosion resistance was presented, by taking the desert scorpion as the research object. The anti-erosion characteristic rules and mechanism of desert scorpion's surface under the dynamics effect of gas/solid mixed media were researched, especially the comprehensive influence mechanism of surface morphology, microstructure, creature flexibility and many other factors was studied. Simulation by CFD software was applied to predict the relative erosion severity. Samples with the coupled bionic configurations and flexibility were produced. Experiment optimum design theory was employed to design experiment scheme. Silica sand of particle size of 105-830 ~tm was used as the erodent. The erosion tests were carried out to validate the simulation results obtained. It is shown that the predicted results are in agreement with those obtained from the experiment. And contrast tests were carried out at the best and worst test points of erosion resistance for four samples. Contrast tests show that the erosion resistance trend occurs in such order with the best erosion resistance as coupling sample, groove, smooth and flexibility, and smooth, and the increasing rate of erosion resistances in sequence of 12.08%, 8.87%, 6.03% in the best test point. But in the poorest point, the increasing rate of erosion resistance is in sequence of 15.64%, 9.53%, 6.59%. The morphologies of eroded surface were examined by the scanning electron microscope, and the possible wear mechanism was discussed.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.51578147)Fundamental Research Funds for the Central Universities(Grant No.2242020R20025)Ningxia Science and Technology Department(Grant No.2020BFG02014).
文摘In most coastal and estuarine areas,tides easily cause surface erosion and even slope failure,resulting in severe land losses,deterioration of coastal infrastructure,and increased floods.The bio-cementation technique has been previously demonstrated to effectively improve the erosion resistance of slopes.Seawater contains magnesium ions(Mg^(2+))with a higher concentration than calcium ions(Ca^(2+));therefore,Mg^(2+)and Ca^(2+)were used together for bio-cementation in this study at various Mg^(2+)/Ca^(2+)ratios as the microbially induced magnesium and calcium precipitation(MIMCP)treatment.Slope angles,surface strengths,precipitation contents,major phases,and microscopic characteristics of precipitation were used to evaluate the treatment effects.Results showed that the MIMCP treatment markedly enhanced the erosion resistance of slopes.Decreased Mg^(2+)/Ca^(2+)ratios resulted in a smaller change in angles and fewer soil losses,especially the Mg^(2+)concentration below 0.2 M.The decreased Mg^(2+)/Ca^(2+)ratio achieved increased precipitation contents,which contributed to better erosion resistance and higher surface strengths.Additionally,the production of aragonite would benefit from elevated Mg^(2+)concentrations and a higher Ca^(2+)concentration led to more nesquehonite in magnesium precipitation crystals.The slopes with an initial angle of 53°had worse erosion resistance than the slopes with an initial angle of 35°,but the Mg^(2+)/Ca^(2+)ratios of 0.2:0.8,0.1:0.9,and 0:1.0 were effective for both slope stabilization and erosion mitigation to a great extent.The results are of great significance for the application of MIMCP to improve erosion resistance of foreshore slopes and the MIMCP technique has promising application potential in marine engineering.
文摘With the intensification of global climate change and the worsening of land degradation,desertification has emerged as a significant global issue threatening ecosystems and human activities.The technique of Microbial Induced Calcium Carbonate Precipitation(MICP)has been widely applied in soil stabilization and engineering geology in recent years.This study conducts experiments using Bacillus megaterium to solidify desert sand via MICP,aiming to explore its feasibility as a novel ecological method for desert protection.Experimental results indicate that desert sand treated with MICP exhibits a significant enhancement in wind erosion resistance,providing a potential solution for desert management and land restoration.
基金Project(2012CB625100)supported by the National Basic Research Program of ChinaProject(2012AA03A512)supported by the National High-tech Research and Development Program of China
文摘A columnar Al film was firstly deposited on the top of 7%Y2O3?stabilized zirconia (7YSZ) ceramic coating in thermal barrier coating (TBC) system by magnetron sputtering. A vacuum treatment was then carried out at 700 °C for 1 h and 900 °C for 5 h to improve the erosion resistance of Al-deposited TBC. Aα-Al2O3 layer was in situ synthesized on the top of 7YSZ coating via vacuum heat treatment. The microstructure evolution of Al-deposited TBC illustrated that a loose surface-layer and a dense sub-layer formed on the top of 7YSZ coating after vacuum treatment. The phase structures of the as-sprayed TBC and the Al-deposited TBC after vacuum heat treatment were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM) assisted with focused ion beam (FIB). Particulate erosion resistances of the as-sprayed TBC and treated TBC were compared at room temperature. In addition, erosion mechanism and schematic diagram were proposed. The results show that the Al-deposited TBC after vacuum heat treatment has better particulate erosion resistance than the as-sprayed one.
文摘Effect of rare earth elements (RE) on erosion resistance of nitrocarburized layer of 38CrMoAl steel was investigated. The results indicate that significant improvement occurs in erosion resistance of nitrocarburized 38CrMoAl steel by introducing RE during nitrocarburizing processing as compared with conventional nitrocarburizing processing. Results of mechanical testing show that both hardness and impact toughness of RE-nitrocarburizing layer of 38CrMoAl steel increase as compared with the conventional one. Optical microscopy reveals that there is improvement in the nitrocarburized layer attributed to the introduction of RE, which results in improvement in erosion resistance. Surface morphology observation of tested samples reveals that predominantly furrow-like peelings from plastic deformation are observed for RE nitrocarburizied 38CrMoAl steel, while the furrow-like peeling with initial cross crack and large grinding peelings were observed for conventionally nitrocarburized samples.
文摘Effects of alloying elements on microstructure and erosion resistance of Fe-C-Cr weld surfacing layer have been studied. The experimental results show that increasing C and Cr content favors improving the erosion resistance of the layer, and the excessive C and Cr result in decreasing the erosion resistance at 90 deg. erosion. That Mo, Nb or Ti improves the erosion resistance of Fe-C-Cr weld surfacing layer is mainly attributed to increasing the amount of M7C3 and forming fine NbC or TiC in austenite matrix, but the excessive Mo, Nb or Ti is unfavorable. The addition of Mo, Nb and Ti in proper combination possesses stronger effect on improving the erosion resistance and the erosion resistance (εA) of Fe-C-Cr weld surfacing layer with fine NbC, TiC and M7C3 distributing uniformly in austenite matrix obviously increases to 2.81 at 15 deg. erosion and 2.88 at 90 deg. erosion when the layer composition is 3.05C, 20.58Cr, 1.88Mo, 2.00Nb and 1.05Ti (in wt pct).
基金Project(HIT.NSRIF.2010112)supported by the Fundamental Research Fund for the Central Universities,ChinaProjects(50902030,51021002)supported by the National Natural Science Foundation of China
文摘BNp/Al2O3-SiO2 system ceramic matrix composites with different volume fractions (10%-60%) of hexagonal BN particulates (BNp) were prepared by hot-press sintering technique. Phase components, microstructure, mechanical properties and plasma erosion resistance were also investigated. With the increase of h-BNp content, relative density and Vickers' hardness of the composite ceramics decrease, while the flexural strength, elastic modulus and fracture toughness increase and then decrease. The plasma erosion resistance linearly deteriorated with the increase of BNp content which is mainly determined by the density, crystal structure and atomic number of the elements.
基金Supported by National Natural Science Foundation of China (Grand No. 51422507)
文摘Cavitation erosion (CE) is the predominant cause for the failure of overflow components in fluid machinery. Advanced coatings have provided an effective solution to cavitation erosion due to the rapid development of surface engineering techniques. However, the influence of coating structures on CE resistance has not been sys- tematically studied. To better understand their relationship, micro-nano and conventional WC-10Co4Cr cermet coat- ings are deposited by high velocity oxygen fuel spray- ing(HVOF), and their microstructures are analyzed by OM, SEM and XRD. Meanwhile, characterizations of mechan- ical and electrochemical properties of the coatings are carried out, as well as the coatings' resistance to CE in 3.5 wt % NaC1 solution, and the cavitation mechanisms are explored. Results show that micro-nano WC-10Co4Cr coating possesses dense microstructure, excellent mechanical and electrochemical properties, with very low porosity of 0.26 4-0.07% and extraordinary fracture toughness of 5.58 4-0.51 MPa.m1/2. Moreover, the CE resistance of micro-nano coating is enhanced above 50% than conventional coating at the steady CE period in 3.5 wt % NaC1 solution. The superior CE resistance of micro- nano WC-10Co4Cr coating may originate from the unique micro-nano structure and properties, which can effectively obstruct the formation and propagation of CE crack. Thus,a new method is proposed to enhance the CE resistance of WC-10Co4Cr coating by manipulating the microstructure.
文摘WCp/NiCrBSi composite coatings have been deposited by plasma spraying with the mixed powders of WC-12Ni and NiCrBSi. The coatings consist mainly of WC, γ-Ni, Ni3B, CrB, Cr2B, M7C3, M23C6 and W2C phases. The W2C content increases with increasing WC mass fraction in the powders. The porosity and microhardness of the coatings are related to the coating WC content. The excessive WC results in decreasing the microhardness due to increasing the porosity. The WCp/ NiCrBSi coating with 35 % WC mass fraction powder has more excellent erosion resistance. With an increase of impact angles from 15° to 90° the erosion rate of the coating increases, the erosion rate at 15° impact angle being approximately two times lower than that at 90° impact angle. Based on the wear morphology of the coatings at different impact angles, the wear mechanisms were discussed.
文摘Fe C Cr weld surfacing layers with different compositions and microstructures can be obtained by submerged arc welding with welding wire of the low carbon steel and high alloy bonded flux. With the increase of Cr and C in the layers the microstructures are changed from hypoeutectoid steel, hypereutectoid steel to hypoeutectic iron and hypereutectic iron. When the weld surfacing layers belong to the alloyed cast irons the erosion resistance can be raised with the eutectic increase and the austenite decrease. Good erosion resistance can be obtained when the proportion of the primary carbides is within 10 %. The experimental results lay a foundation to make double metal percussive plates by surfacing wear resistant layers on the substrates of the low carbon steels.
文摘Along with the reduction of sediment yield of the Huanghe (Yellow) River, the erosion of the Huanghe River Delta aggravates, which has becomes an important factor that threatens the coastal protection structures. Starting from the study of the erosion resistibility of the sediment, this paper explores the internal mechanism of erosion phenomenon. This paper takes Diaokou as the study area and takes soils as samples which are mixed with clay into reconstructed samples whose ratio of clay content are 5%, 10%, 15%, 20% respectively, then dynamic tri-axial apparatus is applied to simulate wave loads of different intensity; then the resistibility of soil to erosion is determined via concentrated flow test and the structural property is determined via the disintegration test. Finally, the resistibility to erosion and the structural property of the non-compressed soil samples are compared with the compressed data. The results indicates that liquefaction failure exerts significant influence on the resistibility to erosion and the structural property of the silty soil in the Huanghe River Delta. Therefore, in the future erosion studies, the liquefaction phenomenon shall be fully considered.
基金Funded by the National Natural Science Foundation of China(No.50372047)
文摘The thermal shock resistance and anti- aluminum erosion of TiB2 - BN multiphase ceramics composites were studied. The experimental results show that the TiB2-BN multiphase ceramic possesses a good thermal shock resistance at high temperatures ( 1000, 1200, 1400, 1500 ℃ ), with the increasing in thermal shocking temperature, the electro-conductivity of TiB2-BN ceramics increases. The metal aluminum has a great influence on the properties of TiB2 - BN ceramics and the main reason is that the aluminum reacts seriously with BN. It is suggested that the content of BN should be reduced to the greatest extent.
基金Funded by the National Natural Science Foundation of China(Nos.11162011,51468049 and 11862022)the Open Project Program of Fujian Key Laboratory of Novel Functional Textile Fibers and Materials+1 种基金Minjiang University(China)(No.FKLT FM1907)the Inner Mongolia Colleges and Universities Youth Science and Technology Talents Support Program(No.NJYT-17-A09)。
文摘Considering the economic and environmental benefits associated with the recycling of polyester(PET)fibres,it is vital to study the application of fibre-reinforced cement composites.According to the characteristics of the wind-blown sand environment in Inner Mongolia,the erosion resistance of the polyester fibre-reinforced cement composites(PETFRCC)with different PET fibre contents to various erosion angles,velocities and sand particle flows was investigated by the gas-blast method.Based on the actual conditions of sandstorms in Inner Mongolia,the sand erosion parameters required for testing were calculated by the similarity theory.The elastic-plastic model and rigid plastic model of PETFRCC and cement mortar were established,and the energy consumption mechanism of the model under particle impact was analyzed.The experimental results indicate that the microstructure of PETFRCC rafter hydration causes a spring-like buffering effect,and the deformation of PETFRCC under the same impact load is slightly smaller than that of cement mortar,and the damage mechanism of PETFRCC is mainly characterized by fiber deformation and slight brittle spalling of matrix.And under the most unfavorable conditions of the erosion,the erosion rate of 0.5PETFRCC is about 57.69%lower than that of cement mortar,showing better erosion resistance.
基金FundedbytheNaturalScienceFoundationofHubeiProv ince (2 0 0 2AB0 77)
文摘The erosion resistance tests were used to research the erosion wear behavior of CaO-Al-2O-3-SiO-2 system glass-ceramic. With the orthogonal test method, the factors that affect the erosion wear of CaO-Al-2O-3-SiO-2 system glass-ceramic such as particles property, impact angle, impact time, size of particles were discussed.The results show that erosion rate rises along a straight line at the early period of erosion wear.With the impact time increased,the erosion rate deviates from original staight line,tendency of the erosion rate increases.With the size of paricle increased,it will have more kinetic energy,the erosion rate of the surface of glass-ceramics ploate rises.
文摘The arc erosion under medium direct currents in the argon flow was tested on tungsten-copper(W-Cu) contacts which were processed by hot extrusion and heat treatment. The scanning electron microscopy(SEM) and transmission electron microscopy(TEM) were used to study the microstructure of the W-Cu powders and compacts. The contact resistance, arcing energy, and arcing time were continuously measured by JF04C contact materials test system. Changes in tungsten-copper contact surface were observed by SEM. The test results showed that the arcing time and arcing energy all increase with current and voltage, but the changes of average contact resistance are more complicated. For a short arcing time, the average contact resistance decreases with increasing current due to the vaporization of Cu. However, for a longer arcing time, it slightly increases due to the formation of high resistant films, compound copper tungsten. The formation of compound copper tungsten was confirmed by the increased Rc kept in the range from 1.1 to 1.6 mΩ. The compound copper tungsten is first exposed with a tungsten and copper-rich surface, and then totally exposed due to evaporation of copper from the surface. At last a stabilized surface is created and the crystals decrease from 8 μm to 2 μm caused by the arc erosion.
基金This paper has obtained the support of the National Natural Science Foundation of China(No.51902039)High-Level Talents Innovation Support Plan of Dalian(No.2020RQ127)Scientific Research Project of Liaoning Provincial Department Education(No.LJKZ0722)。
文摘Two-dimensional carbon/carbon(2D C/C)composites are a special class of carbon/carbon composites,generally obtained by combining resin-impregnated carbon fiber clothes,which are then cured and carbonized.This study deals with the preparation of a protective coating for these materials.This coating,based on graphite,was prepared by the slurry method.The effect of graphite and phenolic resin powders with different weight ratios was examined.The results have shown that the coating slurry can fill the pores and cracks of the composite surface,thereby densifying the surface layer of the material.With the increase of the graphite powder/phenolic resin weight ratio,the coating density is enhanced while the coating surface flatness decreases;moreover,the protective ability of coating against erosion first increases(from 1:3 to 2:2)and then decreases(from 2:2 to 3:1).When the weight ratio is about 1:1,the coating for 2D C/C composites exhibits the best erosion resistance,which greatly aids these materials during gas quenching.In this case,the erosion rate is decreased by approximately 41.5%at the impact angle of 30°and 52.3%at normal impact,respectively.This can be attributed to the ability of the coating slurry to infiltrate into the substrate,thereby bonding the fibers together and increasing the compactness of the 2D C/C composites.
基金Project(2011B050400007)supported by the International Cooperation Program of Guangdong Province,China
文摘Ti/TiN/Zr/ZrN multilayer coatings were deposited on Cr_17Ni_2 steel substrates with different surface roughnesses by vacuum cathodic arc deposition method. Microstructure, micro-hardness, adhesion strength and cross-sectional morphology of the obtained multilayer coatings were investigated. The results show that the Vickers hardness of Ti/TiN/Zr/ZrN multilayer coating, with a film thickness of 11.37 μm, is 29.36 GPa. The erosion and salt spray resistance performance of Cr_17Ni_2 steel substrates can be evidently improved by Ti/TiN/Zr/ZrN multilayer coating. The surface roughness of Cr_17Ni_2 steel substrates plays an important role in determining the mechanical and erosion performances of Ti/TiN/Zr/ZrN multilayer coatings. Overall, a low value of the surface roughness of substrates corresponds to an improved performance of erosion and salt spray resistance of multilayer coatings. The optimized performance of Ti/TiN/Zr/ZrN multilayer coatings can be achieved provided that the surface roughness of Cr_17Ni_2 steel substrates is lower than 0.4μm.
基金funded by the National Natural Science Foundation of China(Grant No.41877082)the Fundamental Research Funds for Central Public Welfare Research Institutes(Grant No.CKSF2019410TB)+2 种基金the National Natural Science Foundation for Young Scientists of China(Grant No.41701316,51909011)the National Key R&D Program of China(Grant No.2017YFC050530302)the Demonstration Project of Water Conservancy Technology(Grant No.SF-201905)。
文摘Biological soil crusts(biocrusts)are important landscape components that exist in various climates and habitats.The roles of biocrusts in numerous soil processes have been predominantly recognized in many dryland regions worldwide.However,little is known about their effects on soil detachment process by overland flow,especially in humid climates.This study quantified the effects of moss-dominated biocrusts on soil detachment capacity(Dc)and soil erosion resistance to flowing water in the Three Gorges Reservoir Area which holds a subtropical humid climate.Potential factors driving soil detachment variation and their influencing mechanism were analyzed and elucidated.We designed five levels of coverage treatments(1%–20%,20%–40%,40%–60%,60%–80%,and 80%–100%)and a nearby bare land as control in a mossdominated site.Undisturbed soil samples were taken and subjected to water flow scouring in a hydraulic flume under six shear stresses ranging from 4.89 to 17.99 Pa.The results indicated that mean Dc of mosscovered soil varied from 0.008 to 0.081 kg m^-2 s^-1,which was 1.9 to 21.0 times lower than that of bare soil(0.160 kg m^-2 s^-1).Rill erodibility(Kr)of mosscovered soil ranged from 0.0095 to 0.0009 s m^-1,which was 2 to 20 times lower than that of bare soil(0.0187 s m^-1).Both relative soil detachment rate and Kr showed an exponential decay with increasing moss coverage,whereas the critical shear stress(τc)for different moss coverage levels did not differ significantly.Moss coverage,soil cohesion,and sand content were key factors affecting Dc,while moss coverage and soil bulk density were key factors affecting Kr.A power function of flow shear stress,soil cohesion,and moss coverage fitted well to estimate Dc(NSE=0.947).Our findings implied that biocrusts prevented soil detachment directly by their physical cover and indirectly by soil properties modification.Biocrusts could be rehabilitated as a promising soil conservation measure during ecological recovery to enhance soil erosion resistance in the Three Gorges Reservoir Area.
基金funded by the National Key Research and Development Program of China (2017YFC0504505)the National Key Technology Support Program of China during the Twelfth Five-year Plan Period (2013BAC05B02, 2013BAC05B04)
文摘The Pisha sandstone-coverd area is among the regions that suffer from the most severe water loss and soil erosion in China and is the main source of coarse sand for the Yellow River. This study demonstrated a new erosion control method using W-OH solution, a type of hydrophilic polyurethane, to prevent the Pisha sandstone from water erosion. We evaluated the comprehensive effects of W-OH on water erosion resistance and vegetation-growth promotion through simulated scouring tests and field demonstrations on the Ordos Plateau of China. The results of simulated scouring tests show that the water erosion resistance of W-OH treated area was excellent and the cumulative sediment yield reduction reached more than 99%. In the field demonstrations, the vegetation coverage reached approximately 95% in the consolidation-green area, and there was almost no shallow trenches on the entire slope in the treated area. In comparison, the control area experienced severe erosion with deep erosion gullies appeared on the slope and the vegetation coverage was less than 30%. This study illustrated that W-OH treatment can protect the Pisha sandstone from erosion and provide the vegetation seeds a chance to grow. Once the vegetation matured, the effects of consolidation-growth mutual promotion can efficiently and effectively improve the water erosion resistance and ecological restoration.
基金funded primarily by grants from the Natural Science Foundation of Fujian Province of China(2021J01120)the National Natural Science Foundation of China(41977071)。
文摘Accurately calculating detachment capacity is the most fundamental issue when establishing a soil erosion process model.Colluvial deposits of Benggang are typical soil-gravel mixtures,whereas the understanding of the soil detachment of colluvial deposits is limited.This work investigated the effects of the gravel contents on the soil detachment capacity of colluvial deposits and its hydrodynamic mechanism.The colluvial sample was collected in Anxi County,Fujian Province,Southeast China,and a small-sample scouring test was used.The slope steepness ranged from 18%to 84%,unit discharge ranged from 0.56×10^(-3)to 2.22×10^(-3)m^(2)s^(-1),and gravel content ranged from 0%to 70%.The results indicated that the gravel content is the primary factor that influences the detachment capacity,followed by the discharge and then the slope.The detachment capacity trend with the gravel content varied over different slopes and discharges.Stream power represents the best hydrodynamic parameter for modelling the detachment capacity of colluvial deposits and can be used to establish a fitting equation for the colluvium together with the mean weight diameter(MWD)(Nash-Sutcliffe efficiency(NSE)=0.96).As the gravel content increased,the soil erodibility parameters increased several folds,in some cases more than 10 folds,mainly because the soil shear strength decreased gradually.Meanwhile,as the gravel content increased,the gravel specific surface area increased,the obstruction of gravel to runoff increased,and the energy needed for runoff to overcome gravel obstruction increased,leading to 2-3 folds higher critical shear stress of runoff for soilgravel mixtures compared with pure soil.In summary,gravel can influence the detachment capacity by changing the soil properties,and the gravel content also affects the relationship between soil detachment capacity and the hydrodynamic parameters.These findings deepen the understanding of the influence of gravel on soil erosion and provide a basis for establishing a soil erosion process model in colluvial deposits.
基金Projects(51205161, 51175220, 51290292) supported by the National Natural Science Foundation of ChinaProjects(20120061120051, 20100061110023) supported by Specialized Research Fund for the Doctoral Program of Higher Education of China+3 种基金Project(OSR-04-04) supported by Cooperation and Innovation to National Potential Oil and Gas for Production and Research, ChinaProject(200905016) supported by Ten Outstanding Youth Fund Project of Jilin University, ChinaProject(2012M511345) supported by China Postdoctoral Science FoundationProject(450060481176) supported by Basic Scientific Research Expenses of Jilin University, China
文摘A new approach which adopted the idea of coupling bionics to improve erosion resistance was presented, by taking the desert scorpion as the research object. The anti-erosion characteristic rules and mechanism of desert scorpion's surface under the dynamics effect of gas/solid mixed media were researched, especially the comprehensive influence mechanism of surface morphology, microstructure, creature flexibility and many other factors was studied. Simulation by CFD software was applied to predict the relative erosion severity. Samples with the coupled bionic configurations and flexibility were produced. Experiment optimum design theory was employed to design experiment scheme. Silica sand of particle size of 105-830 ~tm was used as the erodent. The erosion tests were carried out to validate the simulation results obtained. It is shown that the predicted results are in agreement with those obtained from the experiment. And contrast tests were carried out at the best and worst test points of erosion resistance for four samples. Contrast tests show that the erosion resistance trend occurs in such order with the best erosion resistance as coupling sample, groove, smooth and flexibility, and smooth, and the increasing rate of erosion resistances in sequence of 12.08%, 8.87%, 6.03% in the best test point. But in the poorest point, the increasing rate of erosion resistance is in sequence of 15.64%, 9.53%, 6.59%. The morphologies of eroded surface were examined by the scanning electron microscope, and the possible wear mechanism was discussed.