The mining of limestone mines plays a crucial role in societal and economic advancement.However,mining activities have led to destructive variations in grassland ecology and soil,causing numerous environmental problem...The mining of limestone mines plays a crucial role in societal and economic advancement.However,mining activities have led to destructive variations in grassland ecology and soil,causing numerous environmental problems,and effective artificial restoration measures have been used to restore grasslands in the Shimenhe mining areas to different degrees.In this study,we investigated,examined and analyzed plant community structure and its correlation with soil properties across varying degrees of alpine grassland restoration in Qilian Mountains Shimenhe restoration mines using the sample method,and studied the changes in species diversity using five diversity indexes(Simpson index,Shannon index,Margalef index,Dominance index and Evenness index).This study showed that the plant community characteristics with high recovered degree(HRD)>middle recovered degree(MRD)>low recovered degree(LRD)>very low recovered degree(VLRD),11 plant genera comprising 11 species across 10 families were identified.Dominant families with robust ecological adaptability included Leguminosae,Rosaceae,Gramineae,Asteraceae,and Salicaceae.The highest Simpson,Shannon,Margalef and Evenness index of HRD grassland community species were 0.82,1.96,1.66 and 0.89,respectively.The highest Dominance index of VLRD grassland community species was 0.34,which required several restoration methods such as spraying and mulching.Soil pH and EC tended to decrease with increasing restoration,SOC,SMC,TP,AP,NH4-N,TN,AN and NO3-N tended to increase and the content of soil environmental factors contributed to vegetation growth across various restoration levels the mine grassland.In conclusion,our study indicated that the community structure gradually diversified and soil properties changed positively with the increase of restoration degrees in the Qilian Mountains Shimenhe mine,and the best results of HRD restoration were obtained.This study provides the theoretical basis for the restoration and conservation of grasslands in mining areas by demonstrating examined the correlation between plant characteristics and soil properties in restored grasslands in alpine mining areas.展开更多
[Objectives]The paper was to investigate the garden greenbelt in 30 sample plots such as parks,roads,communities,etc.in Shijiazhuang City.[Methods]The species,abundance and frequency of weeds in the greenbelt of publi...[Objectives]The paper was to investigate the garden greenbelt in 30 sample plots such as parks,roads,communities,etc.in Shijiazhuang City.[Methods]The species,abundance and frequency of weeds in the greenbelt of public gardens were recorded through point-line-surface investigation,and typical plants were sampled.[Results]There were 56 species of alien invasive plants in garden greenbelts of Shijiazhuang City,belonging to 44 genera and 20 families.In terms of life form,herbaceous plants were absolutely dominant,accounting for 92.8%of the total.The most alien invasive plants were native to America,accounting for 66.1%of the total.In terms of introduction path,the plants introduced artificially and unintentionally accounted for almost half.The species and quantity of alien invasive plants were related to the size of greenbelt area,the length of the build time of the surveyed plot,the composition structure of greenbelt and the level of green management and protection.There was larger distribution of alien invasive plants in the sample plots with large greenbelt area,long build time,herbaceous-dominated greenbelt and low level of green management and protection.Among the 56 alien invasive plants,3 plants were toxic.From the perspective of invasiveness,the alien invasive plants in the garden greenbelt of Shijiazhuang City could be divided into 5 levels:invasive alien species of malignant consequences,invasive alien species of severe consequences,invasive alien species of partial consequences,invasive alien species of average consequences,and invasive alien species to be observed.[Conclusions]This study will provide a reference for the prevention and control of alien plant invasion,and lay a foundation for the prevention and control of existing invasive plants.展开更多
Many of the abandoned mining and industrial land in villages and towns are seriously polluted by heavy metals in China,it is necessary for sustainable development to adopt efficient and economical ways to restore the ...Many of the abandoned mining and industrial land in villages and towns are seriously polluted by heavy metals in China,it is necessary for sustainable development to adopt efficient and economical ways to restore the ecology of abandoned mining and industrial land.Pollution level of topsoil contaminated with metallurgical slag from nonferrous metal smelting waste site in Baoding,North China and the heavy metals(HMs)accumulation behavior of Bidens pilosa L.(B.pilosa,native pioneer plant)were studied.Two selected study sites were mainly contaminated by As(270~434 mg/kg),Cd(63~95 mg/kg),Pb(5496~24504 mg/kg)and Zn(4500~21300 mg/kg),which exceed the national standard severely.Investigation of multi-metal accumulation in different parts of B.pilosa indicated that the absorption of toxic metals varied by types,concentration and species of HMs under stress conditions,soil property and plant tissues.The results showed that B.pilosa had excellent ability to accumulate HMs under different HMs stress condition,with the highest accumulation concentration of 85 mg/kg for As,380 mg/kg for Cd,4000 mg/kg for Pb,and 7500 mg/kg for Zn in roots under experimental conditions,respectively.The growth trend of B.pilosa declined with the increase of HMs stress concentration in tested soils.HMs stress led to different degrees of plant toxicity and obstruction of physiological metabolism.Among the plant physiological index,Chla and ChlT decreased 28.0%and 28.1%,37.3%and 35.5%under different stress treatments,respectively.Indicators related to physiological metabolic strength and stress resistance of plant,such as MDA(Malondiadehyde),CAT(catalase),SOD(superoxide dismutase)and SP(soluble protein),all increased with the increase of HMs stress concentration.展开更多
[Objective] The aim was to resolve the issue of sparsely planting (37 500-40 500 plants/hm2) of sweet potato in hilly areas. [Method] The starch-oriented Jishu No.21 and raw-eating oriented Jishu No.22 were studied ...[Objective] The aim was to resolve the issue of sparsely planting (37 500-40 500 plants/hm2) of sweet potato in hilly areas. [Method] The starch-oriented Jishu No.21 and raw-eating oriented Jishu No.22 were studied to explore effects of planting density on yield and sink and source characteristics of sweet potato. [IRe- suit] Leaf area index of Jishu No.21 and Jishu No.22 were increasing upon planting density. Leaf area index of the same planting density showed a single-peak curve. Specifically, leaf area index grew fast during the 40th-80th d after planting, and reached the peak on the 80th d after planting, followed by decreasing. What's more, ventilation and sunshine transmission both declined upon planting density, as well as the number of leaf, the number of branch, the length of vine, dry and fresh weights of stem and leaf. When planting density exceeded 75 000 plants/hm2, the yield of sweet potato dropped dramatically. Besides, the optimal planting density tended to be volatile upon cultivars. For example, the range of 45 000-60 000 plants/hm2 is the optimal planting density of Jishu No.21 and the range of 60 000-75 000 plants/hm2 is the optimal planting density of Jishu No.22. [Conclusion] It can be concluded that rational planting densities would well coordinate sweet potato growth of ground parts and underground parts to get a high yield by providing a rational group structure. Considering the optimal planting density differs upon cultivars, it is necessary to take genotype, environment, soil fertility and planting density into consideration in determining planting density.展开更多
According to the investigation of sampling area of 6800 m2 on the south slope of Shennongjia Mountain, there were 126 vascular plant species, belonging to 108 genera and 64 families, in the investigated rare plant com...According to the investigation of sampling area of 6800 m2 on the south slope of Shennongjia Mountain, there were 126 vascular plant species, belonging to 108 genera and 64 families, in the investigated rare plant communities, of which 9 rare plant species were recorded, accounting for 27.3% of the total rare plants. The communities were about 30 m in height and were divided into three layers as tree layer, shrub layer, and herb layer. The flora of the communities had obvious temperate character. Phanerophytes (accounted for 65.9%), Mesophyllous (62.7%), Papyraceous (84.1%), simple leaf (83.3%), un-entire leaf (69.8%) were dominant in life form, leaf size class, leaf texture, leaf form, and leaf margin respectively. According to important value of species, the communities were divided into three types as Davidia involucrata + Litsea pungens community, Cercidiphyllum japanicum + Padus wilsonii community, and Padus wilsonii + Acer mono community. The indexes of species diversity of tree layer had little difference among communities and evenness was high. The results indicated that the communities had complex structure and relative stability.展开更多
Through field investigation, the plant landscaping and its characteristics of Sweet Osmanthus Exposition Park in Guilin were analyzed in terms of three aspects: the allocation of Sweet Osmanthus species, the collocati...Through field investigation, the plant landscaping and its characteristics of Sweet Osmanthus Exposition Park in Guilin were analyzed in terms of three aspects: the allocation of Sweet Osmanthus species, the collocation of Sweet Osmanthus and other plants, plants' arrangement in Sweet Osmanthus landscape garden, which would provide reference for the construction of the special categorized plants gardens.展开更多
Companion cropping can influence cucumber productivity by altering soil chemical characteristics and microbial communities. However, how these alterations affect the growth of cucumber is still unknown. In this study,...Companion cropping can influence cucumber productivity by altering soil chemical characteristics and microbial communities. However, how these alterations affect the growth of cucumber is still unknown. In this study, seven different plant species were selected as companion plants for testing their effects on cucumber productivity. The effects of different companion plants on changes in soil chemical properties such as electrical conductivity (EC) and contents of essential nutrients as well as the structure and abundance of the soil Pseudomonas community were evaluated. The results showed a higher cucumber yield in the wheat/cucumber companion system than that in the cucumber monocultured and other companion cropping systems. The lowest phosphorus (P) and potassium (K) contents in the soil were found in the cucumber monocultured system, and the highest NO3+-N and NH4*-N contents were observed in the rye/cucumber companion system. PCR-denaturing gradient gel electrophoresis (DGGE) and real-time PCR analysis showed that the trifolium/cucumber companion system increased the diversity of the soil Pseudomonas community, while the chrysanthemum/cucumber companion system increased its abundance. Interestingly, plant-soil feedback trials revealed that inoculating the soil of the wheat/cucumber companion system increased the growth of cucumber seedlings. In conclusion, the effects of different companion plants on cucumber productivity, soil chemical characteristics and the soil Pseudomonas community were different, and wheat was a more suitable companion plant for increasing cucumber productivity. In addition, the altered microbial community caused by companion cropping with wheat contributed to increased cucumber productivity.展开更多
The MT10 mutant plants had resistances to auxin.Under light and dark culture,the roots of MT10 seedlings had shown less lateral roots and short lateral roots.In soil,MT10 seedlings had shown not only no changed agrono...The MT10 mutant plants had resistances to auxin.Under light and dark culture,the roots of MT10 seedlings had shown less lateral roots and short lateral roots.In soil,MT10 seedlings had shown not only no changed agronomic characteristics but also no significant difference with WT.展开更多
Arugula(Eruca sativa Mill.),as an edible medicinal vegetable of peculiar flavor,is served as uncooked dish.The influence of variable lighting intensity(LI)on the growth characteristics and nutritional quality of hydro...Arugula(Eruca sativa Mill.),as an edible medicinal vegetable of peculiar flavor,is served as uncooked dish.The influence of variable lighting intensity(LI)on the growth characteristics and nutritional quality of hydroponically grown arugula was investigated by using light-emitting diodes(LEDs)to light the hydroponically grown arugula for a reference for industrialized arugula production.The dynamic demands of arugula for LI in the seedling stage,initial growth stage and vigorous growth stage were tested under two light quality conditions including a red/blue light ratio of 7:1 and a light/dark photoperiod of 12 h/12 h.Then,the curves of variable LI-induced changes in the growth indices of arugula in different development periods were drawn.Next,the influence of variable LI on the growth characteristics and nutritional quality of arugula was investigated by measuring the dry/fresh weight ratio,chlorophyll content,vitamin C content and soluble protein content.Variable LI significantly increased the height,stem diameter,leaf width,dry/fresh weight ratio,chlorophyll content and soluble protein content of arugula plant.Plant height,stem diameter,dry/fresh weight ratio,chlorophyll content and soluble protein content were the highest in the group exposed to LI of 200,300 and 300μmol•m^(-2)•s^(-1)during the seedling stage,initial growth stage and vigorous growth stage,respectively.The greatest leaf width was achieved at LI of 100,250 and 350μmol•m^(-2)•s^(-1),respectively.High intensity LI markedly repressed the synthesis of vitamin C.展开更多
The change of plant community character during recovery succession processes of high mountain meadow in Naqu, Tibet, was investigated. The results show that there are 41 plant species in the inventoried quadrates. The...The change of plant community character during recovery succession processes of high mountain meadow in Naqu, Tibet, was investigated. The results show that there are 41 plant species in the inventoried quadrates. The high-plants in four big families plays important roles in natural vegetation recovery, while Kobresia play an important role in climax communities. The plant species components changed with each succession stage. The plant species were mainly annual and biennial during the early succession stage, and perennial during the medium; and dominated by Kobresia humilis during the late. Potentilla bifurca and Potentilla tanaletfolia were both found in all stages. The accumulated number of family, genus, and species during the succession process varied quadric with the stages. The main plant community characteristics varied logistically with the succession stages except the height. The community characteristics mainly affected by dominant species which were changed in same rhythms. The biomass under ground was far more than the upground. The plant diversity inflated in the medium stage.展开更多
Through investigating Gentianaceae plant resources in Guizhou Province, collecting and identifying specimens, consulting relevant records and documents, Gentianaceae plant resources in Guizhou Province and their ornam...Through investigating Gentianaceae plant resources in Guizhou Province, collecting and identifying specimens, consulting relevant records and documents, Gentianaceae plant resources in Guizhou Province and their ornamental characteristics have been elaborated, and the ornamental species of Gentianaceae plants in this region were introduced.展开更多
In order to discuss the relationship between the characteristics of plant communities and the content of topsoil organic matter under the condition of two-season sedentary grazing, authors of this paper selected a Sti...In order to discuss the relationship between the characteristics of plant communities and the content of topsoil organic matter under the condition of two-season sedentary grazing, authors of this paper selected a Stipa krylovii steppe for research and studied the plant community characteristics and the topsoil organic matter content. The results showed that in the sedentary grazing area, the perennial plant species decreased, the annual plant species increased, and the topsoil organic matter content decreased. There were a negative correlation between plant biomass and topsoil organic matter content, and a positive correlation between total coverage and topsoil organic matter content. The change of plant community characteristics in the sedentary grazing area was related to the implementation of the system of transferring the pasture use rights to the herdsmen and controlled grazing.展开更多
To probe the influence and the adverse-resistance characteristics of wetland plants in presence of silver nanoparticles (AgNPs), the changes in the physiological and biochemical characteristics (including the superoxi...To probe the influence and the adverse-resistance characteristics of wetland plants in presence of silver nanoparticles (AgNPs), the changes in the physiological and biochemical characteristics (including the superoxide dismutase (SOD) activity, catalase (CAT) activity, peroxidase (POD) activity, soluble protein content, and chlorophyll content) of Typha orientalis exposed to different concentrations of AgNPs solutions (0, 0.1, 1, 20 and 40 mg/L) were explored. Meantime, the accumulation of silver content in these plants was revealed. The results show that under low concentrations of AgNPs, the SOD and POD activities in the leaves of Typha orientalis are strengthened to different degrees. However, high concentrations of AgNPs inhibit the activities of SOD and POD. Under the stress of different concentrations of AgNPs, the CAT activities are inhibited initially and later recovered to some extent. Under the stress of low concentrations of AgNPs, the soluble protein content in the leaves of Typha orientalis increases significantly, but decreases more significantly with increasing concentrations of AgNPs. Low concentrations of AgNPs promote chlorophyll synthesis in the leaves of Typha orientalis , but the chlorophyll content subsequently falls to pre-stress levels. In contrast, high concentrations of AgNPs cause a certain inhibition to generate chlorophyll. Meanwhile, the results show that the silver concentrations of plant tissues increase with the exposure of concentrations of AgNPs and they have a positive relationship with the exposure of concentrations of AgNPs.展开更多
The influence of a 40-fold attenuated geomagnetic field and its combined action with low doses of α- and γ-irradiation on the physiological characteristics of seeds of the highest plants and redox properties of wate...The influence of a 40-fold attenuated geomagnetic field and its combined action with low doses of α- and γ-irradiation on the physiological characteristics of seeds of the highest plants and redox properties of water was investigated. It established the reduction of seed germination both under direct and indirect effects due to water action of attenuated geomagnetic field. A negative effect of hypomagnetic field on grown characteristics of seeds under indirect effect via water was decreased by the low doses of γ-irradiation, and was increased by low doses of α-irradiation, i.e. ionized radiation was the dominant factor in their combined action. It was revealed the increasing of the value of the oxidation-reduction potential of water under the influence of low-intensive α-ir-radiation (239Pu), γ-irradiation (137Cs) and also that the magnetic induction attenuated pointing to a natural decline. The increasing of the oxidation-reduction potential value testifies about “the regular decreasing of internal energy of water molecules” and the increasing of its oxidative properties, which, in our opinion, is caused the inhibition of the germination of seeds. It is supposed that namely water is the main component in the effects of studying factors on bio-objects, which acts due to the alterations of the properties and structural content of water.展开更多
Microplastic pollution has become a worldwide issue.The discharge of sewage treatment plants(STPs)or wastewater treatment plant(WWTPs)is an important way for microplastics to enter the environment.This study reviewed ...Microplastic pollution has become a worldwide issue.The discharge of sewage treatment plants(STPs)or wastewater treatment plant(WWTPs)is an important way for microplastics to enter the environment.This study reviewed the sources and occurrence characteristics(type,size,color and components)of microplastics in domestic and foreign sewage plants.It elaborated the removal principles of microplastics by primary,secondary and tertiary treatments.In addition,the removal effects of various treatment units and different processes on microplastics were summarized.In the future,the removal mechanism of microplastics in sewage treatment plants should be discussed in more depth,so as to further improve the removal rate of microplastics by optimizing and transforming traditional sewage treatment processes.Therefore,it is necessary to develop new technologies/processes specifically for the removal of microplastics and promote them to practical applications.展开更多
Based on the investigation of the species and frequency of submerged plants in Nanjishan Wetland of Poyang Lake in the winter of 2013,chlorophyll contents and photosynthetic fluorescence characteristics of the dominan...Based on the investigation of the species and frequency of submerged plants in Nanjishan Wetland of Poyang Lake in the winter of 2013,chlorophyll contents and photosynthetic fluorescence characteristics of the dominant submerged plants were studied using chlorophyll fluorescence imaging method. The results indicate that the major submerged plants of Nanjishan Wetland in Poyang Lake in winter included Hydrilla verticillata,Vallisneria natans,Najas minor,Potamogeton pectinatus,Nymphoides peltatum,Myriophyllum verticillatum and so on,and the dominant species were mainly H. verticillata and V. natans in different submerged plant communities. The chlorophyll content of H. verticillata is higher than that of V.natans,and the photosynthesis intensity of H. verticillata is stronger than that of V. natans. The value of Ca / Cb of H. verticillata is not large,which shows that the light-harvesting capacity of H. verticillata's chlorophyll is considerable in different sampling sites. The highest value of QY-max of V.natans is up to 0. 732,while the lowest value is only 0. 465; the highest value of QY-max of H. verticillata is 0. 677,while the lowest value is 0. 556.All values of QY-max of the submerged plants were lower than 0. 8,which shows that the submerged plants in Nanjishan Wetland of Poyang Lake may be subjected to certain external stress,which indicates that the external stress might cause some damage for the PSII reaction centers.展开更多
Anchusa italica Retz.,a perennial herb,has the effects of clearing away heat and toxic materials,and killing parasites to relieve itching.It is mainly used for breast abscess,sore swollen poison,scabies and so on,and ...Anchusa italica Retz.,a perennial herb,has the effects of clearing away heat and toxic materials,and killing parasites to relieve itching.It is mainly used for breast abscess,sore swollen poison,scabies and so on,and serves as one of the commonly used medicinal materials in Uygur medicine.A.italica is distributed in Iran,Europe,Afghanistan and Kazakhstan.It is cultivated in China,and Xinjiang mostly imports it from Pakistan.This study belongs to the technical field of traditional Chinese medicine planting.The planting method solves the technical problems of sowing,field management,harvesting and processing of A.italica.展开更多
Using 15 indica rice varieties with different panicle weight, some ideal plant type characteristics in heavy panicle type of hybrid rice (HPT) and their relation to yield and its components were studied. Results sho...Using 15 indica rice varieties with different panicle weight, some ideal plant type characteristics in heavy panicle type of hybrid rice (HPT) and their relation to yield and its components were studied. Results showed that the leaf area index (LAI) of the HPT varieties was lower than that of medium panicle type (MPT) and light panicle type (LPT) varieties, but its decreasing rate of LAI and efficient LAI after heading was slower and had much higher percentage of efficient LAI, specific leaf weight, and ratio of grain to leaf area (cm^2) in comparison with the MPT and the LPT varieties. The length, width, thickness, and area of top three leaves of the HPT varieties were significantly larger than those of the MPT and the LPT varieties, and these components of top three leaves were significantly and positively correlated with the number of spikelets and filled grains, grain weight per panicle, and grain yield. The flag leaf in HPT varieties was erect with sorrow leaf angle, and their leaf angle of 2nd and 3rd leaf from top increased in sequence. The plant height of the HPT varieties was higher than that of the MPT and the LPT varieties, and their leaf site of top three leaves also increased in sequence. Therefore, HPT varieties as an ideal plant type could increase the utilization efficiency of sunlight energy. The ideal plant type characteristics and their adjuncts for the HPT varieties are proposed in this article.展开更多
The aim of the present study was to investigate the effect of electromagnetic radio frequency treatment of water on the growth of pepper (Capsicum annuum) plants. For this experiment, one hundred one-week old plants w...The aim of the present study was to investigate the effect of electromagnetic radio frequency treatment of water on the growth of pepper (Capsicum annuum) plants. For this experiment, one hundred one-week old plants were divided into two groups. The first group of plants was watered with water subjected to radio frequency electromagnetic radiation from an internet router for one hour a day, while the other group was watered with tap water (control). The overall results showed changes of growth characters of plant watered with electromagnetic water. The length of pepper plants is significantly affected by the treated water, where the length of shoot was lower in plants grown under the effect of treated water (22.43 ± 7.17 cm) than those grown without treated water (28.11 ± 8.57 cm). The results revealed that the stem diameter of control plants (1.74 ± 0.39 cm) was significantly higher than that of the treated plants (1.66 ± 0.35 cm). In addition, the root length was lower in plants grown under the effect of treated water than those grown without treated water. Pepper plants watered with electromagnetic treated water exhibited marked decreases in health index, fresh and dry weight, relative water content, number of flowers and fruits/plant as well as number of seeds/fruit. In addition, the current experiment showed a significant decrease in the number of leaves, branch and flower per plant when watered with electromagnetic treated water. The results revealed that the first flowering time for plants in treated group was remarkably decelerated when compared to other plants in control group.展开更多
基金supported by the National Key R&D Program of China(Nos.2022YFF1303301,2022YFF1302603)the National Natural Science Foundation of China(Nos.52179026,42001035,42101115)+5 种基金the Science and Technology Program of Gansu Province(Nos.22JR5RA072,22JR5RA068)the Postdoctoral Funding Program of Gansu Province(No.E339880139)the Natural Science Foundation of Gansu Province(No.E331040901)the Science and Technology Fund of Gansu Province(No.23JRRA640)the Consulting and Research Project of the Gansu Research Institute of Chinese Engineering Science and Technology Development Strategy(No.GS2022ZDI03)the Open Fund of Technology Innovation Center for Mine Geological Environment Restoration in the Alpine and Arid Regions(No.HHGCKK2204).
文摘The mining of limestone mines plays a crucial role in societal and economic advancement.However,mining activities have led to destructive variations in grassland ecology and soil,causing numerous environmental problems,and effective artificial restoration measures have been used to restore grasslands in the Shimenhe mining areas to different degrees.In this study,we investigated,examined and analyzed plant community structure and its correlation with soil properties across varying degrees of alpine grassland restoration in Qilian Mountains Shimenhe restoration mines using the sample method,and studied the changes in species diversity using five diversity indexes(Simpson index,Shannon index,Margalef index,Dominance index and Evenness index).This study showed that the plant community characteristics with high recovered degree(HRD)>middle recovered degree(MRD)>low recovered degree(LRD)>very low recovered degree(VLRD),11 plant genera comprising 11 species across 10 families were identified.Dominant families with robust ecological adaptability included Leguminosae,Rosaceae,Gramineae,Asteraceae,and Salicaceae.The highest Simpson,Shannon,Margalef and Evenness index of HRD grassland community species were 0.82,1.96,1.66 and 0.89,respectively.The highest Dominance index of VLRD grassland community species was 0.34,which required several restoration methods such as spraying and mulching.Soil pH and EC tended to decrease with increasing restoration,SOC,SMC,TP,AP,NH4-N,TN,AN and NO3-N tended to increase and the content of soil environmental factors contributed to vegetation growth across various restoration levels the mine grassland.In conclusion,our study indicated that the community structure gradually diversified and soil properties changed positively with the increase of restoration degrees in the Qilian Mountains Shimenhe mine,and the best results of HRD restoration were obtained.This study provides the theoretical basis for the restoration and conservation of grasslands in mining areas by demonstrating examined the correlation between plant characteristics and soil properties in restored grasslands in alpine mining areas.
基金Supported by National Key R&D Program(2020YFF0305905-06)Science and Technology Project of Hebei Academy of Sciences(22112)Key Discipline Project of Hebei Academy of Sciences(491-0401-YBN-DDH4).
文摘[Objectives]The paper was to investigate the garden greenbelt in 30 sample plots such as parks,roads,communities,etc.in Shijiazhuang City.[Methods]The species,abundance and frequency of weeds in the greenbelt of public gardens were recorded through point-line-surface investigation,and typical plants were sampled.[Results]There were 56 species of alien invasive plants in garden greenbelts of Shijiazhuang City,belonging to 44 genera and 20 families.In terms of life form,herbaceous plants were absolutely dominant,accounting for 92.8%of the total.The most alien invasive plants were native to America,accounting for 66.1%of the total.In terms of introduction path,the plants introduced artificially and unintentionally accounted for almost half.The species and quantity of alien invasive plants were related to the size of greenbelt area,the length of the build time of the surveyed plot,the composition structure of greenbelt and the level of green management and protection.There was larger distribution of alien invasive plants in the sample plots with large greenbelt area,long build time,herbaceous-dominated greenbelt and low level of green management and protection.Among the 56 alien invasive plants,3 plants were toxic.From the perspective of invasiveness,the alien invasive plants in the garden greenbelt of Shijiazhuang City could be divided into 5 levels:invasive alien species of malignant consequences,invasive alien species of severe consequences,invasive alien species of partial consequences,invasive alien species of average consequences,and invasive alien species to be observed.[Conclusions]This study will provide a reference for the prevention and control of alien plant invasion,and lay a foundation for the prevention and control of existing invasive plants.
基金funded by National Natural Science Foundation(Grant No.42177236)Taishan Scholars Project Foundation(tsqn202211185)+1 种基金Guangdong Basic and Applied Basic Research Foundation(Grant No.2020A1515011077)Natural Science Foundation of Shandong Province(Grant No.ZR2020MD119)。
文摘Many of the abandoned mining and industrial land in villages and towns are seriously polluted by heavy metals in China,it is necessary for sustainable development to adopt efficient and economical ways to restore the ecology of abandoned mining and industrial land.Pollution level of topsoil contaminated with metallurgical slag from nonferrous metal smelting waste site in Baoding,North China and the heavy metals(HMs)accumulation behavior of Bidens pilosa L.(B.pilosa,native pioneer plant)were studied.Two selected study sites were mainly contaminated by As(270~434 mg/kg),Cd(63~95 mg/kg),Pb(5496~24504 mg/kg)and Zn(4500~21300 mg/kg),which exceed the national standard severely.Investigation of multi-metal accumulation in different parts of B.pilosa indicated that the absorption of toxic metals varied by types,concentration and species of HMs under stress conditions,soil property and plant tissues.The results showed that B.pilosa had excellent ability to accumulate HMs under different HMs stress condition,with the highest accumulation concentration of 85 mg/kg for As,380 mg/kg for Cd,4000 mg/kg for Pb,and 7500 mg/kg for Zn in roots under experimental conditions,respectively.The growth trend of B.pilosa declined with the increase of HMs stress concentration in tested soils.HMs stress led to different degrees of plant toxicity and obstruction of physiological metabolism.Among the plant physiological index,Chla and ChlT decreased 28.0%and 28.1%,37.3%and 35.5%under different stress treatments,respectively.Indicators related to physiological metabolic strength and stress resistance of plant,such as MDA(Malondiadehyde),CAT(catalase),SOD(superoxide dismutase)and SP(soluble protein),all increased with the increase of HMs stress concentration.
基金Supported by Special Fund for China Agriculture Research SystemKey Application Technology and Innovation Subject of Shandong Province in 2013~~
文摘[Objective] The aim was to resolve the issue of sparsely planting (37 500-40 500 plants/hm2) of sweet potato in hilly areas. [Method] The starch-oriented Jishu No.21 and raw-eating oriented Jishu No.22 were studied to explore effects of planting density on yield and sink and source characteristics of sweet potato. [IRe- suit] Leaf area index of Jishu No.21 and Jishu No.22 were increasing upon planting density. Leaf area index of the same planting density showed a single-peak curve. Specifically, leaf area index grew fast during the 40th-80th d after planting, and reached the peak on the 80th d after planting, followed by decreasing. What's more, ventilation and sunshine transmission both declined upon planting density, as well as the number of leaf, the number of branch, the length of vine, dry and fresh weights of stem and leaf. When planting density exceeded 75 000 plants/hm2, the yield of sweet potato dropped dramatically. Besides, the optimal planting density tended to be volatile upon cultivars. For example, the range of 45 000-60 000 plants/hm2 is the optimal planting density of Jishu No.21 and the range of 60 000-75 000 plants/hm2 is the optimal planting density of Jishu No.22. [Conclusion] It can be concluded that rational planting densities would well coordinate sweet potato growth of ground parts and underground parts to get a high yield by providing a rational group structure. Considering the optimal planting density differs upon cultivars, it is necessary to take genotype, environment, soil fertility and planting density into consideration in determining planting density.
基金This paper was supported by the Chinese Academy of Sciences (KZCX2-406) National Natural Science Foundation of China (NSFC39970123) Changbai Mountain Open Research Station.
文摘According to the investigation of sampling area of 6800 m2 on the south slope of Shennongjia Mountain, there were 126 vascular plant species, belonging to 108 genera and 64 families, in the investigated rare plant communities, of which 9 rare plant species were recorded, accounting for 27.3% of the total rare plants. The communities were about 30 m in height and were divided into three layers as tree layer, shrub layer, and herb layer. The flora of the communities had obvious temperate character. Phanerophytes (accounted for 65.9%), Mesophyllous (62.7%), Papyraceous (84.1%), simple leaf (83.3%), un-entire leaf (69.8%) were dominant in life form, leaf size class, leaf texture, leaf form, and leaf margin respectively. According to important value of species, the communities were divided into three types as Davidia involucrata + Litsea pungens community, Cercidiphyllum japanicum + Padus wilsonii community, and Padus wilsonii + Acer mono community. The indexes of species diversity of tree layer had little difference among communities and evenness was high. The results indicated that the communities had complex structure and relative stability.
基金Supported by Scientific Research and Technological Development Program of Guangxi(0033010-3)~~
文摘Through field investigation, the plant landscaping and its characteristics of Sweet Osmanthus Exposition Park in Guilin were analyzed in terms of three aspects: the allocation of Sweet Osmanthus species, the collocation of Sweet Osmanthus and other plants, plants' arrangement in Sweet Osmanthus landscape garden, which would provide reference for the construction of the special categorized plants gardens.
基金supported by the earmarked fund for the China Agriculture Research System (CARS-25)the National Natural Science Foundation of China (31471917)
文摘Companion cropping can influence cucumber productivity by altering soil chemical characteristics and microbial communities. However, how these alterations affect the growth of cucumber is still unknown. In this study, seven different plant species were selected as companion plants for testing their effects on cucumber productivity. The effects of different companion plants on changes in soil chemical properties such as electrical conductivity (EC) and contents of essential nutrients as well as the structure and abundance of the soil Pseudomonas community were evaluated. The results showed a higher cucumber yield in the wheat/cucumber companion system than that in the cucumber monocultured and other companion cropping systems. The lowest phosphorus (P) and potassium (K) contents in the soil were found in the cucumber monocultured system, and the highest NO3+-N and NH4*-N contents were observed in the rye/cucumber companion system. PCR-denaturing gradient gel electrophoresis (DGGE) and real-time PCR analysis showed that the trifolium/cucumber companion system increased the diversity of the soil Pseudomonas community, while the chrysanthemum/cucumber companion system increased its abundance. Interestingly, plant-soil feedback trials revealed that inoculating the soil of the wheat/cucumber companion system increased the growth of cucumber seedlings. In conclusion, the effects of different companion plants on cucumber productivity, soil chemical characteristics and the soil Pseudomonas community were different, and wheat was a more suitable companion plant for increasing cucumber productivity. In addition, the altered microbial community caused by companion cropping with wheat contributed to increased cucumber productivity.
文摘The MT10 mutant plants had resistances to auxin.Under light and dark culture,the roots of MT10 seedlings had shown less lateral roots and short lateral roots.In soil,MT10 seedlings had shown not only no changed agronomic characteristics but also no significant difference with WT.
基金Supported by the National"the 13th Five-Year"Key R&D Program(2016YFD0701905)。
文摘Arugula(Eruca sativa Mill.),as an edible medicinal vegetable of peculiar flavor,is served as uncooked dish.The influence of variable lighting intensity(LI)on the growth characteristics and nutritional quality of hydroponically grown arugula was investigated by using light-emitting diodes(LEDs)to light the hydroponically grown arugula for a reference for industrialized arugula production.The dynamic demands of arugula for LI in the seedling stage,initial growth stage and vigorous growth stage were tested under two light quality conditions including a red/blue light ratio of 7:1 and a light/dark photoperiod of 12 h/12 h.Then,the curves of variable LI-induced changes in the growth indices of arugula in different development periods were drawn.Next,the influence of variable LI on the growth characteristics and nutritional quality of arugula was investigated by measuring the dry/fresh weight ratio,chlorophyll content,vitamin C content and soluble protein content.Variable LI significantly increased the height,stem diameter,leaf width,dry/fresh weight ratio,chlorophyll content and soluble protein content of arugula plant.Plant height,stem diameter,dry/fresh weight ratio,chlorophyll content and soluble protein content were the highest in the group exposed to LI of 200,300 and 300μmol•m^(-2)•s^(-1)during the seedling stage,initial growth stage and vigorous growth stage,respectively.The greatest leaf width was achieved at LI of 100,250 and 350μmol•m^(-2)•s^(-1),respectively.High intensity LI markedly repressed the synthesis of vitamin C.
文摘The change of plant community character during recovery succession processes of high mountain meadow in Naqu, Tibet, was investigated. The results show that there are 41 plant species in the inventoried quadrates. The high-plants in four big families plays important roles in natural vegetation recovery, while Kobresia play an important role in climax communities. The plant species components changed with each succession stage. The plant species were mainly annual and biennial during the early succession stage, and perennial during the medium; and dominated by Kobresia humilis during the late. Potentilla bifurca and Potentilla tanaletfolia were both found in all stages. The accumulated number of family, genus, and species during the succession process varied quadric with the stages. The main plant community characteristics varied logistically with the succession stages except the height. The community characteristics mainly affected by dominant species which were changed in same rhythms. The biomass under ground was far more than the upground. The plant diversity inflated in the medium stage.
文摘Through investigating Gentianaceae plant resources in Guizhou Province, collecting and identifying specimens, consulting relevant records and documents, Gentianaceae plant resources in Guizhou Province and their ornamental characteristics have been elaborated, and the ornamental species of Gentianaceae plants in this region were introduced.
基金Sponsored by National Natural Science Foundation of China(41561009,41561050)Scientific Research Innovation Funds for Graduates in Inner Mongolia Normal University(CXJJ17101)
文摘In order to discuss the relationship between the characteristics of plant communities and the content of topsoil organic matter under the condition of two-season sedentary grazing, authors of this paper selected a Stipa krylovii steppe for research and studied the plant community characteristics and the topsoil organic matter content. The results showed that in the sedentary grazing area, the perennial plant species decreased, the annual plant species increased, and the topsoil organic matter content decreased. There were a negative correlation between plant biomass and topsoil organic matter content, and a positive correlation between total coverage and topsoil organic matter content. The change of plant community characteristics in the sedentary grazing area was related to the implementation of the system of transferring the pasture use rights to the herdsmen and controlled grazing.
基金The National Natural Science Foundation of China(No.51479034,5151101102)
文摘To probe the influence and the adverse-resistance characteristics of wetland plants in presence of silver nanoparticles (AgNPs), the changes in the physiological and biochemical characteristics (including the superoxide dismutase (SOD) activity, catalase (CAT) activity, peroxidase (POD) activity, soluble protein content, and chlorophyll content) of Typha orientalis exposed to different concentrations of AgNPs solutions (0, 0.1, 1, 20 and 40 mg/L) were explored. Meantime, the accumulation of silver content in these plants was revealed. The results show that under low concentrations of AgNPs, the SOD and POD activities in the leaves of Typha orientalis are strengthened to different degrees. However, high concentrations of AgNPs inhibit the activities of SOD and POD. Under the stress of different concentrations of AgNPs, the CAT activities are inhibited initially and later recovered to some extent. Under the stress of low concentrations of AgNPs, the soluble protein content in the leaves of Typha orientalis increases significantly, but decreases more significantly with increasing concentrations of AgNPs. Low concentrations of AgNPs promote chlorophyll synthesis in the leaves of Typha orientalis , but the chlorophyll content subsequently falls to pre-stress levels. In contrast, high concentrations of AgNPs cause a certain inhibition to generate chlorophyll. Meanwhile, the results show that the silver concentrations of plant tissues increase with the exposure of concentrations of AgNPs and they have a positive relationship with the exposure of concentrations of AgNPs.
文摘The influence of a 40-fold attenuated geomagnetic field and its combined action with low doses of α- and γ-irradiation on the physiological characteristics of seeds of the highest plants and redox properties of water was investigated. It established the reduction of seed germination both under direct and indirect effects due to water action of attenuated geomagnetic field. A negative effect of hypomagnetic field on grown characteristics of seeds under indirect effect via water was decreased by the low doses of γ-irradiation, and was increased by low doses of α-irradiation, i.e. ionized radiation was the dominant factor in their combined action. It was revealed the increasing of the value of the oxidation-reduction potential of water under the influence of low-intensive α-ir-radiation (239Pu), γ-irradiation (137Cs) and also that the magnetic induction attenuated pointing to a natural decline. The increasing of the oxidation-reduction potential value testifies about “the regular decreasing of internal energy of water molecules” and the increasing of its oxidative properties, which, in our opinion, is caused the inhibition of the germination of seeds. It is supposed that namely water is the main component in the effects of studying factors on bio-objects, which acts due to the alterations of the properties and structural content of water.
基金Supported by Project of National Natural Science Foundation of China(42007317)Project of Guangdong Basic and Applied Basic Research Foundation(2019A1515110272)+1 种基金Outstanding Young Teachers'Scientific Research Ability Improvement Program Funding Project of Zhaoqing University(YQ202105)Innovation and Entrepreneurship Training Program for College Students(202210580015).
文摘Microplastic pollution has become a worldwide issue.The discharge of sewage treatment plants(STPs)or wastewater treatment plant(WWTPs)is an important way for microplastics to enter the environment.This study reviewed the sources and occurrence characteristics(type,size,color and components)of microplastics in domestic and foreign sewage plants.It elaborated the removal principles of microplastics by primary,secondary and tertiary treatments.In addition,the removal effects of various treatment units and different processes on microplastics were summarized.In the future,the removal mechanism of microplastics in sewage treatment plants should be discussed in more depth,so as to further improve the removal rate of microplastics by optimizing and transforming traditional sewage treatment processes.Therefore,it is necessary to develop new technologies/processes specifically for the removal of microplastics and promote them to practical applications.
基金Supported by the National Natural Science Foundation of China(41161035,41461042)National Key Technology R&D Program in the 12th Five-Year Plan of China(2011BAC13B02)Key Technology R&D Program of Jiangxi Province,China(20133BBG70005)
文摘Based on the investigation of the species and frequency of submerged plants in Nanjishan Wetland of Poyang Lake in the winter of 2013,chlorophyll contents and photosynthetic fluorescence characteristics of the dominant submerged plants were studied using chlorophyll fluorescence imaging method. The results indicate that the major submerged plants of Nanjishan Wetland in Poyang Lake in winter included Hydrilla verticillata,Vallisneria natans,Najas minor,Potamogeton pectinatus,Nymphoides peltatum,Myriophyllum verticillatum and so on,and the dominant species were mainly H. verticillata and V. natans in different submerged plant communities. The chlorophyll content of H. verticillata is higher than that of V.natans,and the photosynthesis intensity of H. verticillata is stronger than that of V. natans. The value of Ca / Cb of H. verticillata is not large,which shows that the light-harvesting capacity of H. verticillata's chlorophyll is considerable in different sampling sites. The highest value of QY-max of V.natans is up to 0. 732,while the lowest value is only 0. 465; the highest value of QY-max of H. verticillata is 0. 677,while the lowest value is 0. 556.All values of QY-max of the submerged plants were lower than 0. 8,which shows that the submerged plants in Nanjishan Wetland of Poyang Lake may be subjected to certain external stress,which indicates that the external stress might cause some damage for the PSII reaction centers.
基金Supported by Scientific Research Project of Central Asian Center of Drug Discovery and Development,Chinese Academy of Sciences(CAM202204).
文摘Anchusa italica Retz.,a perennial herb,has the effects of clearing away heat and toxic materials,and killing parasites to relieve itching.It is mainly used for breast abscess,sore swollen poison,scabies and so on,and serves as one of the commonly used medicinal materials in Uygur medicine.A.italica is distributed in Iran,Europe,Afghanistan and Kazakhstan.It is cultivated in China,and Xinjiang mostly imports it from Pakistan.This study belongs to the technical field of traditional Chinese medicine planting.The planting method solves the technical problems of sowing,field management,harvesting and processing of A.italica.
文摘Using 15 indica rice varieties with different panicle weight, some ideal plant type characteristics in heavy panicle type of hybrid rice (HPT) and their relation to yield and its components were studied. Results showed that the leaf area index (LAI) of the HPT varieties was lower than that of medium panicle type (MPT) and light panicle type (LPT) varieties, but its decreasing rate of LAI and efficient LAI after heading was slower and had much higher percentage of efficient LAI, specific leaf weight, and ratio of grain to leaf area (cm^2) in comparison with the MPT and the LPT varieties. The length, width, thickness, and area of top three leaves of the HPT varieties were significantly larger than those of the MPT and the LPT varieties, and these components of top three leaves were significantly and positively correlated with the number of spikelets and filled grains, grain weight per panicle, and grain yield. The flag leaf in HPT varieties was erect with sorrow leaf angle, and their leaf angle of 2nd and 3rd leaf from top increased in sequence. The plant height of the HPT varieties was higher than that of the MPT and the LPT varieties, and their leaf site of top three leaves also increased in sequence. Therefore, HPT varieties as an ideal plant type could increase the utilization efficiency of sunlight energy. The ideal plant type characteristics and their adjuncts for the HPT varieties are proposed in this article.
文摘The aim of the present study was to investigate the effect of electromagnetic radio frequency treatment of water on the growth of pepper (Capsicum annuum) plants. For this experiment, one hundred one-week old plants were divided into two groups. The first group of plants was watered with water subjected to radio frequency electromagnetic radiation from an internet router for one hour a day, while the other group was watered with tap water (control). The overall results showed changes of growth characters of plant watered with electromagnetic water. The length of pepper plants is significantly affected by the treated water, where the length of shoot was lower in plants grown under the effect of treated water (22.43 ± 7.17 cm) than those grown without treated water (28.11 ± 8.57 cm). The results revealed that the stem diameter of control plants (1.74 ± 0.39 cm) was significantly higher than that of the treated plants (1.66 ± 0.35 cm). In addition, the root length was lower in plants grown under the effect of treated water than those grown without treated water. Pepper plants watered with electromagnetic treated water exhibited marked decreases in health index, fresh and dry weight, relative water content, number of flowers and fruits/plant as well as number of seeds/fruit. In addition, the current experiment showed a significant decrease in the number of leaves, branch and flower per plant when watered with electromagnetic treated water. The results revealed that the first flowering time for plants in treated group was remarkably decelerated when compared to other plants in control group.