A nonlinear Galerkin mixed element (NGME) method and a posteriori error exstimator based on the method are established for the stationary Navier-Stokes equations. The existence and error estimates of the NGME solution...A nonlinear Galerkin mixed element (NGME) method and a posteriori error exstimator based on the method are established for the stationary Navier-Stokes equations. The existence and error estimates of the NGME solution are first discussed, and then a posteriori error estimator based on the NGME method is derived.展开更多
The main aim of this paper is to give an anisotropic posteriori error estimator. We firstly study the convergence of bilineax finite element for the second order problem under anisotropic meshes. By using some novel a...The main aim of this paper is to give an anisotropic posteriori error estimator. We firstly study the convergence of bilineax finite element for the second order problem under anisotropic meshes. By using some novel approaches and techniques, the optimal error estimates and some superconvergence results axe obtained without the regulaxity assumption and quasi-uniform assumption requirements on the meshes. Then, based on these results, we give an anisotropic posteriori error estimate for the second problem.展开更多
A new technique of residual-type a posteriori error analysis is developed for the lowest- order Raviart-Thomas mixed finite element discretizations of convection-diffusion-reaction equations in two- or three-dimension...A new technique of residual-type a posteriori error analysis is developed for the lowest- order Raviart-Thomas mixed finite element discretizations of convection-diffusion-reaction equations in two- or three-dimension. Both centered mixed scheme and upwind-weighted mixed scheme are considered. The a posteriori error estimators, derived for the stress variable error plus scalar displacement error in L_2-norm, can be directly computed with the solutions of the mixed schemes without any additional cost, and are proven to be reliable. Local efficiency dependent on local variations in coefficients is obtained without any saturation assumption, and holds from the cases where convection or reaction is not present to convection- or reaction-dominated problems. The main tools of the analysis are the postprocessed approximation of scalar displacement, abstract error estimates, and the property of modified Oswald interpolation. Numerical experiments are carried out to support our theoretical results and to show the competitive behavior of the proposed posteriori error estimates.展开更多
In this paper we will show that the Richardson extrapolation can be used to enhance the numerical solution generated by a Petrov-Galerkin finite element method for the initial value problem for a nonlinear Volterra in...In this paper we will show that the Richardson extrapolation can be used to enhance the numerical solution generated by a Petrov-Galerkin finite element method for the initial value problem for a nonlinear Volterra integro-differential equation. As by-products, we will also show that these enhanced approximations can be used to form a class of posteriori estimators for this Petrov-Galerkin finite element method. Numerical examples are supplied to illustrate the theoretical results.展开更多
In this paper, a type of accurate a posteriori error estimator is proposed for the Steklov eigenvalue problem based on the complementary approach, which provides an asymptotic exact estimate for the approximate eigenp...In this paper, a type of accurate a posteriori error estimator is proposed for the Steklov eigenvalue problem based on the complementary approach, which provides an asymptotic exact estimate for the approximate eigenpair. Besides, we design a type of cascadic adaptive finite element method for the Steklov eigenvalue problem based on the proposed a posteriori error estimator. In this new cascadic adaptive scheme, instead of solving the Steklov eigenvalue problem in each adaptive space directly, we only need to do some smoothing steps for linearized boundary value problems on a series of adaptive spaces and solve some Steklov eigenvalue problems on a low dimensional space. Furthermore, the proposed a posteriori error estimator provides the way to refine meshes and control the number of smoothing steps for the cascadic adaptive method. Some numerical examples are presented to validate the efficiency of the algorithm in this paper.展开更多
In this paper, a new discrete formulation and a type of new posteriori error estimators for the second-order element discretization for Stokes problems are presented, where pressure is approximated with piecewise fir...In this paper, a new discrete formulation and a type of new posteriori error estimators for the second-order element discretization for Stokes problems are presented, where pressure is approximated with piecewise first-degree polynomials and velocity vector field with piecewise second-degree polynomials with a cubic bubble function to be added. The estimators are the globally upper and locally lower bounds for the error of the finite element discretization. It is shown that the bubble part for this second-order element approximation is substituted for the other parts of the approximate solution.展开更多
In this paper,a residual type of a posteriori error estimator for the general second order elliptic eigenpair approximation by the mixed finite element method is derived and analyzed,based on a type of superconvergenc...In this paper,a residual type of a posteriori error estimator for the general second order elliptic eigenpair approximation by the mixed finite element method is derived and analyzed,based on a type of superconvergence result of the eigenfunction approximation.Its efficiency and reliability are proved by both theoretical analysis and numerical experiments.展开更多
In this paper,we study the a posteriori error estimator of SDG method for variable coefficients time-harmonic Maxwell's equations.We propose two a posteriori error estimators,one is the recovery-type estimator,and...In this paper,we study the a posteriori error estimator of SDG method for variable coefficients time-harmonic Maxwell's equations.We propose two a posteriori error estimators,one is the recovery-type estimator,and the other is the residual-type estimator.We first propose the curl-recovery method for the staggered discontinuous Galerkin method(SDGM),and based on the super-convergence result of the postprocessed solution,an asymptotically exact error estimator is constructed.The residual-type a posteriori error estimator is also proposed,and it's reliability and effectiveness are proved for variable coefficients time-harmonic Maxwell's equations.The efficiency and robustness of the proposed estimators is demonstrated by the numerical experiments.展开更多
Compared with the rank reduction estimator(RARE) based on second-order statistics(called SOS-RARE), the RARE based on fourth-order cumulants(referred to as FOC-RARE) can handle more sources and restrain the negative i...Compared with the rank reduction estimator(RARE) based on second-order statistics(called SOS-RARE), the RARE based on fourth-order cumulants(referred to as FOC-RARE) can handle more sources and restrain the negative impacts of the Gaussian colored noise. However, the unexpected modeling errors appearing in practice are known to significantly degrade the performance of the RARE. Therefore, the direction-of-arrival(DOA) estimation performance of the FOC-RARE is quantitatively derived. The explicit expression for direction-finding(DF) error is derived via the first-order perturbation analysis, and then the theoretical formula for the mean square error(MSE) is given. Simulation results demonstrate the validation of the theoretical analysis and reveal that the FOC-RARE is more robust to the unexpected modeling errors than the SOS-RARE.展开更多
In this paper, we propose the nonconforming virtual element method (NCVEM) discretization for the pointwise control constraint optimal control problem governed by elliptic equations. Based on the NCVEM approximation o...In this paper, we propose the nonconforming virtual element method (NCVEM) discretization for the pointwise control constraint optimal control problem governed by elliptic equations. Based on the NCVEM approximation of state equation and the variational discretization of control variables, we construct a virtual element discrete scheme. For the state, adjoint state and control variable, we obtain the corresponding prior estimate in H<sup>1</sup> and L<sup>2</sup> norms. Finally, some numerical experiments are carried out to support the theoretical results.展开更多
This paper presents a posteriori residual error estimator for the new mixed el-ement scheme for second order elliptic problem on anisotropic meshes. The reliability and efficiency of our estimator are established with...This paper presents a posteriori residual error estimator for the new mixed el-ement scheme for second order elliptic problem on anisotropic meshes. The reliability and efficiency of our estimator are established without any regularity assumption on the mesh.展开更多
One important issue for the simulation of flexible multibody systems is the reduction of the flexible bodies de- grees of freedom. As far as safety questions are concerned knowledge about the error introduced by the r...One important issue for the simulation of flexible multibody systems is the reduction of the flexible bodies de- grees of freedom. As far as safety questions are concerned knowledge about the error introduced by the reduction of the flexible degrees of freedom is helpful and very important. In this work, an a-posteriori error estimator for linear first order systems is extended for error estimation of me- chanical second order systems. Due to the special second order structure of mechanical systems, an improvement of the a-posteriori error estimator is achieved. A major advan- tage of the a-posteriori error estimator is that the estimator is independent of the used reduction technique. Therefore, it can be used for moment-matching based, Gramian matrices based or modal based model reduction techniques. The capability of the proposed technique is demon- strated by the a-posteriori error estimation of a mechanical system, and a sensitivity analysis of the parameters involved in the error estimation process is conducted.展开更多
An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same t...An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.展开更多
In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existenc...In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.展开更多
In a quantum key distribution(QKD) system, the error rate needs to be estimated for determining the joint probability distribution between legitimate parties, and for improving the performance of key reconciliation....In a quantum key distribution(QKD) system, the error rate needs to be estimated for determining the joint probability distribution between legitimate parties, and for improving the performance of key reconciliation. We propose an efficient error estimation scheme for QKD, which is called parity comparison method(PCM). In the proposed method, the parity of a group of sifted keys is practically analysed to estimate the quantum bit error rate instead of using the traditional key sampling. From the simulation results, the proposed method evidently improves the accuracy and decreases revealed information in most realistic application situations.展开更多
Errors inevitably exist in numerical weather prediction (NWP) due to imperfect numeric and physical parameterizations. To eliminate these errors, by considering NWP as an inverse problem, an unknown term in the pred...Errors inevitably exist in numerical weather prediction (NWP) due to imperfect numeric and physical parameterizations. To eliminate these errors, by considering NWP as an inverse problem, an unknown term in the prediction equations can be estimated inversely by using the past data, which are presumed to represent the imperfection of the NWP model (model error, denoted as ME). In this first paper of a two-part series, an iteration method for obtaining the MEs in past intervals is presented, and the results from testing its convergence in idealized experiments are reported. Moreover, two batches of iteration tests were applied in the global forecast system of the Global and Regional Assimilation and Prediction System (GRAPES-GFS) for July-August 2009 and January-February 2010. The datasets associated with the initial conditions and sea surface temperature (SST) were both based on NCEP (National Centers for Environmental Prediction) FNL (final) data. The results showed that 6th h forecast errors were reduced to 10% of their original value after a 20-step iteration. Then, off-line forecast error corrections were estimated linearly based on the 2-month mean MEs and compared with forecast errors. The estimated error corrections agreed well with the forecast errors, but the linear growth rate of the estimation was steeper than the forecast error. The advantage of this iteration method is that the MEs can provide the foundation for online correction. A larger proportion of the forecast errors can be expected to be canceled out by properly introducing the model error correction into GRAPES-GFS.展开更多
The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space ...The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).展开更多
Some theory problems affecting parameter estimation are discussed in this paper. Influence and transformation between errors of stochastic and functional models is pointed out as well. For choosing the best adjustment...Some theory problems affecting parameter estimation are discussed in this paper. Influence and transformation between errors of stochastic and functional models is pointed out as well. For choosing the best adjustment model, a formula, which is different from the literatures existing methods, for estimating and identifying the model error, is proposed. On the basis of the proposed formula, an effective approach of selecting the best model of adjustment system is given.展开更多
The subject of this work is to propose adaptive finite element methods based on an optimal maximum norm error control estimate.Using estimators of the local regularity of the unknown exact solution derived from comput...The subject of this work is to propose adaptive finite element methods based on an optimal maximum norm error control estimate.Using estimators of the local regularity of the unknown exact solution derived from computed approximate solutions,the proposed procedures are analyzed in detail for a non-trivial class of corner problems and shown to be efficient in the sense that they generate the correct type of refinement and lead to the desired control under consideration.展开更多
In this article, we study the explicit expressions of the constants in the error estimate of the nonconforming finite element method. We explicitly obtain the approximation error estimate and the consistency error est...In this article, we study the explicit expressions of the constants in the error estimate of the nonconforming finite element method. We explicitly obtain the approximation error estimate and the consistency error estimate for the Wilson's element without the regular assumption, respectively, which implies the final finite element error estimate. Such explicit a priori error estimates can be used as computable error bounds.展开更多
文摘A nonlinear Galerkin mixed element (NGME) method and a posteriori error exstimator based on the method are established for the stationary Navier-Stokes equations. The existence and error estimates of the NGME solution are first discussed, and then a posteriori error estimator based on the NGME method is derived.
文摘The main aim of this paper is to give an anisotropic posteriori error estimator. We firstly study the convergence of bilineax finite element for the second order problem under anisotropic meshes. By using some novel approaches and techniques, the optimal error estimates and some superconvergence results axe obtained without the regulaxity assumption and quasi-uniform assumption requirements on the meshes. Then, based on these results, we give an anisotropic posteriori error estimate for the second problem.
基金The authors are grateful for the anonymous referees for their helpful com- ments. This work was supported in part by The Education Science Foundation of Chongqing (KJ120420), National Natural Science Foundation of China (11171239), The Project-sponsored by Scientific Research Foundation for the Returned Overseas Chinese Scholars and Open Fund of Key Laboratory of Mountain Hazards and Earth Surface Processes, CAS.
文摘A new technique of residual-type a posteriori error analysis is developed for the lowest- order Raviart-Thomas mixed finite element discretizations of convection-diffusion-reaction equations in two- or three-dimension. Both centered mixed scheme and upwind-weighted mixed scheme are considered. The a posteriori error estimators, derived for the stress variable error plus scalar displacement error in L_2-norm, can be directly computed with the solutions of the mixed schemes without any additional cost, and are proven to be reliable. Local efficiency dependent on local variations in coefficients is obtained without any saturation assumption, and holds from the cases where convection or reaction is not present to convection- or reaction-dominated problems. The main tools of the analysis are the postprocessed approximation of scalar displacement, abstract error estimates, and the property of modified Oswald interpolation. Numerical experiments are carried out to support our theoretical results and to show the competitive behavior of the proposed posteriori error estimates.
基金This work is supported partially by SRF for ROCS, SEM, NSERC (Canada) and NSF grant DMS-9704621.
文摘In this paper we will show that the Richardson extrapolation can be used to enhance the numerical solution generated by a Petrov-Galerkin finite element method for the initial value problem for a nonlinear Volterra integro-differential equation. As by-products, we will also show that these enhanced approximations can be used to form a class of posteriori estimators for this Petrov-Galerkin finite element method. Numerical examples are supplied to illustrate the theoretical results.
基金supported by National Natural Science Foundation of China(Grant Nos.11801021 and 11571027)Foundation for Fundamental Research of Beijing University of Technology(Grant No.006000546318504)International Research Cooperation Seed Fund of Beijing University of Technology(Grant No.2018B32)。
文摘In this paper, a type of accurate a posteriori error estimator is proposed for the Steklov eigenvalue problem based on the complementary approach, which provides an asymptotic exact estimate for the approximate eigenpair. Besides, we design a type of cascadic adaptive finite element method for the Steklov eigenvalue problem based on the proposed a posteriori error estimator. In this new cascadic adaptive scheme, instead of solving the Steklov eigenvalue problem in each adaptive space directly, we only need to do some smoothing steps for linearized boundary value problems on a series of adaptive spaces and solve some Steklov eigenvalue problems on a low dimensional space. Furthermore, the proposed a posteriori error estimator provides the way to refine meshes and control the number of smoothing steps for the cascadic adaptive method. Some numerical examples are presented to validate the efficiency of the algorithm in this paper.
基金the National Natural Science Foundation of China, the Evolvement Plan of Science and Technology of Beijing Educational Council,
文摘In this paper, a new discrete formulation and a type of new posteriori error estimators for the second-order element discretization for Stokes problems are presented, where pressure is approximated with piecewise first-degree polynomials and velocity vector field with piecewise second-degree polynomials with a cubic bubble function to be added. The estimators are the globally upper and locally lower bounds for the error of the finite element discretization. It is shown that the bubble part for this second-order element approximation is substituted for the other parts of the approximate solution.
基金supported by National Natural Science Foundation of China(Grant Nos.11001259,11031006,11071265,11201501 and 91230110)National Basic Research Program of China(973 Project)(Grant No. 2011CB309703)+3 种基金International S&T Cooperation Program of China(Grant No. 2010DFR00700)Croucher Foundation of Hong Kong Baptist Universitythe National Center for Mathematics and Interdisciplinary Science,CAS,the President Foundation of AMSS-CASthe Fundamental Research Funds for the CentralUniversities(Grant No. 2012121003)
文摘In this paper,a residual type of a posteriori error estimator for the general second order elliptic eigenpair approximation by the mixed finite element method is derived and analyzed,based on a type of superconvergence result of the eigenfunction approximation.Its efficiency and reliability are proved by both theoretical analysis and numerical experiments.
基金supported by NSFC Projects(Nos.11771371,12171411,11971410)Project of Scientific Research Fund of Hunan Provincial Science and Technology Department(No.2018WK4006)+1 种基金Project of Scientific Research Fund of Hunan Provincial Science and Technology Department,China(No.2020ZYT003)National defense basic scientific research program JCKY2019403D001.
文摘In this paper,we study the a posteriori error estimator of SDG method for variable coefficients time-harmonic Maxwell's equations.We propose two a posteriori error estimators,one is the recovery-type estimator,and the other is the residual-type estimator.We first propose the curl-recovery method for the staggered discontinuous Galerkin method(SDGM),and based on the super-convergence result of the postprocessed solution,an asymptotically exact error estimator is constructed.The residual-type a posteriori error estimator is also proposed,and it's reliability and effectiveness are proved for variable coefficients time-harmonic Maxwell's equations.The efficiency and robustness of the proposed estimators is demonstrated by the numerical experiments.
基金Project(61201381) supported by the National Natural Science Foundation of ChinaProject(YP12JJ202057) supported by the Future Development Foundation of Zhengzhou Information Science and Technology College,China
文摘Compared with the rank reduction estimator(RARE) based on second-order statistics(called SOS-RARE), the RARE based on fourth-order cumulants(referred to as FOC-RARE) can handle more sources and restrain the negative impacts of the Gaussian colored noise. However, the unexpected modeling errors appearing in practice are known to significantly degrade the performance of the RARE. Therefore, the direction-of-arrival(DOA) estimation performance of the FOC-RARE is quantitatively derived. The explicit expression for direction-finding(DF) error is derived via the first-order perturbation analysis, and then the theoretical formula for the mean square error(MSE) is given. Simulation results demonstrate the validation of the theoretical analysis and reveal that the FOC-RARE is more robust to the unexpected modeling errors than the SOS-RARE.
文摘In this paper, we propose the nonconforming virtual element method (NCVEM) discretization for the pointwise control constraint optimal control problem governed by elliptic equations. Based on the NCVEM approximation of state equation and the variational discretization of control variables, we construct a virtual element discrete scheme. For the state, adjoint state and control variable, we obtain the corresponding prior estimate in H<sup>1</sup> and L<sup>2</sup> norms. Finally, some numerical experiments are carried out to support the theoretical results.
文摘This paper presents a posteriori residual error estimator for the new mixed el-ement scheme for second order elliptic problem on anisotropic meshes. The reliability and efficiency of our estimator are established without any regularity assumption on the mesh.
文摘One important issue for the simulation of flexible multibody systems is the reduction of the flexible bodies de- grees of freedom. As far as safety questions are concerned knowledge about the error introduced by the reduction of the flexible degrees of freedom is helpful and very important. In this work, an a-posteriori error estimator for linear first order systems is extended for error estimation of me- chanical second order systems. Due to the special second order structure of mechanical systems, an improvement of the a-posteriori error estimator is achieved. A major advan- tage of the a-posteriori error estimator is that the estimator is independent of the used reduction technique. Therefore, it can be used for moment-matching based, Gramian matrices based or modal based model reduction techniques. The capability of the proposed technique is demon- strated by the a-posteriori error estimation of a mechanical system, and a sensitivity analysis of the parameters involved in the error estimation process is conducted.
基金Supported by the National Natural Science Foundation of China (10601022)Natural Science Foundation of Inner Mongolia Autonomous Region (200607010106)Youth Science Foundation of Inner Mongolia University(ND0702)
文摘An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.
基金supported by the National Basic Research Program under the Grant 2005CB321701the National Natural Science Foundation of China under the Grants 60474027 and 10771211.
文摘In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.
基金Project supported by the National Basic Research Program of China(Grant Nos.2011CBA00200 and 2011CB921200)the National Natural Science Foundation of China(Grant Nos.61101137,61201239,and 61205118)
文摘In a quantum key distribution(QKD) system, the error rate needs to be estimated for determining the joint probability distribution between legitimate parties, and for improving the performance of key reconciliation. We propose an efficient error estimation scheme for QKD, which is called parity comparison method(PCM). In the proposed method, the parity of a group of sifted keys is practically analysed to estimate the quantum bit error rate instead of using the traditional key sampling. From the simulation results, the proposed method evidently improves the accuracy and decreases revealed information in most realistic application situations.
基金funded by the National Natural Science Foundation Science Fund for Youth (Grant No.41405095)the Key Projects in the National Science and Technology Pillar Program during the Twelfth Fiveyear Plan Period (Grant No.2012BAC22B02)the National Natural Science Foundation Science Fund for Creative Research Groups (Grant No.41221064)
文摘Errors inevitably exist in numerical weather prediction (NWP) due to imperfect numeric and physical parameterizations. To eliminate these errors, by considering NWP as an inverse problem, an unknown term in the prediction equations can be estimated inversely by using the past data, which are presumed to represent the imperfection of the NWP model (model error, denoted as ME). In this first paper of a two-part series, an iteration method for obtaining the MEs in past intervals is presented, and the results from testing its convergence in idealized experiments are reported. Moreover, two batches of iteration tests were applied in the global forecast system of the Global and Regional Assimilation and Prediction System (GRAPES-GFS) for July-August 2009 and January-February 2010. The datasets associated with the initial conditions and sea surface temperature (SST) were both based on NCEP (National Centers for Environmental Prediction) FNL (final) data. The results showed that 6th h forecast errors were reduced to 10% of their original value after a 20-step iteration. Then, off-line forecast error corrections were estimated linearly based on the 2-month mean MEs and compared with forecast errors. The estimated error corrections agreed well with the forecast errors, but the linear growth rate of the estimation was steeper than the forecast error. The advantage of this iteration method is that the MEs can provide the foundation for online correction. A larger proportion of the forecast errors can be expected to be canceled out by properly introducing the model error correction into GRAPES-GFS.
文摘The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).
基金Project supported by the Open Research Fund Programof the Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, WuhanUniversity (No.905276031-04-10) .
文摘Some theory problems affecting parameter estimation are discussed in this paper. Influence and transformation between errors of stochastic and functional models is pointed out as well. For choosing the best adjustment model, a formula, which is different from the literatures existing methods, for estimating and identifying the model error, is proposed. On the basis of the proposed formula, an effective approach of selecting the best model of adjustment system is given.
文摘The subject of this work is to propose adaptive finite element methods based on an optimal maximum norm error control estimate.Using estimators of the local regularity of the unknown exact solution derived from computed approximate solutions,the proposed procedures are analyzed in detail for a non-trivial class of corner problems and shown to be efficient in the sense that they generate the correct type of refinement and lead to the desired control under consideration.
基金supported by National Natural Science Foundation of China (11071226 11201122)
文摘In this article, we study the explicit expressions of the constants in the error estimate of the nonconforming finite element method. We explicitly obtain the approximation error estimate and the consistency error estimate for the Wilson's element without the regular assumption, respectively, which implies the final finite element error estimate. Such explicit a priori error estimates can be used as computable error bounds.