Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this...Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this work, we propose a convenient look-up-table-based (LUT-based) method to compensate for the non-linear error in captured fringe patterns. Without extra calibration, this LUT-based method completely utilizes the captured fringe pattern by recording the full-field differences. Then, a phase compensation map is established to revise the measured phase. Experimental results demonstrate that this method works effectively.展开更多
The performance of ground moving target detection for distributed satellites will be affected signifi-cantly when there is an image registration error,clutter decorrelation and array error.In this paper,a new approach...The performance of ground moving target detection for distributed satellites will be affected signifi-cantly when there is an image registration error,clutter decorrelation and array error.In this paper,a new approach to moving target detection and relocation is proposed based on multi-channel and multi-pixel adap-tive signal processing in an image domain.First,multi-channel and multi-pixel joint data are equated to a simple array model.Given that there is an image registration error,the real steering vector of the moving target can be estimated through a space projection approach.The optimal beam forming approach is used to cancel clutter,and at the same time the cross-track velocity of the mov-ing target can be determined by searching for the peak value of the cost function.The moving target can then be relocated on the SAR image.The simulation results indicate that this method has a good robustness to image registration error,clutter decorrelation and array error.The detection performance and the estimation accuracy are significantly improved.展开更多
Today's emergence of nano-micro hybrid structures with almost biological complexity is of fundamental interest. Our ability to adapt intelligently to the challenges has ramifications all the way from fundamentally ch...Today's emergence of nano-micro hybrid structures with almost biological complexity is of fundamental interest. Our ability to adapt intelligently to the challenges has ramifications all the way from fundamentally changing research itself, over applications critical to future survival, to posing globally existential dangers. Touching on specific issues such as how complexity relates to the catalytic prowess of multi-metal compounds, we discuss the increasingly urgent issues in nanotechnology also very generally and guided by the motto 'Bio Is Nature's Nanotech'. Technology belongs to macro-evolution; for example integration with artificial intelligence (AI) is inevitable. Darwinian adaptation manifests as integration of complexity, and awareness of this helps in developing adaptable research methods that can find use across a wide range of research. The second half of this work reviews a diverse range of projects which all benefited from 'playful' programming aimed at dealing with complexity. The main purpose of reviewing them is to show how such projects benefit from and fit in with the general, philosophical approach, proving the relevance of the 'big picture' where it is usually disregarded.展开更多
基金the financial support provided by the National Natural Science Foundation of China(11472267 and 11372182)the National Basic Research Program of China(2012CB937504)
文摘Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this work, we propose a convenient look-up-table-based (LUT-based) method to compensate for the non-linear error in captured fringe patterns. Without extra calibration, this LUT-based method completely utilizes the captured fringe pattern by recording the full-field differences. Then, a phase compensation map is established to revise the measured phase. Experimental results demonstrate that this method works effectively.
基金supported by the National Natural Science Foundation of China(Grant No.60472097).
文摘The performance of ground moving target detection for distributed satellites will be affected signifi-cantly when there is an image registration error,clutter decorrelation and array error.In this paper,a new approach to moving target detection and relocation is proposed based on multi-channel and multi-pixel adap-tive signal processing in an image domain.First,multi-channel and multi-pixel joint data are equated to a simple array model.Given that there is an image registration error,the real steering vector of the moving target can be estimated through a space projection approach.The optimal beam forming approach is used to cancel clutter,and at the same time the cross-track velocity of the mov-ing target can be determined by searching for the peak value of the cost function.The moving target can then be relocated on the SAR image.The simulation results indicate that this method has a good robustness to image registration error,clutter decorrelation and array error.The detection performance and the estimation accuracy are significantly improved.
基金jointly supported by the Natural Science Foundation of Jiangsu Province (No.2012729)the Innovation Fund of Jiangsu Province (No.BY2013072-06)the National Natural Science Foundation of China (No.51171078 and No.11374136)
文摘Today's emergence of nano-micro hybrid structures with almost biological complexity is of fundamental interest. Our ability to adapt intelligently to the challenges has ramifications all the way from fundamentally changing research itself, over applications critical to future survival, to posing globally existential dangers. Touching on specific issues such as how complexity relates to the catalytic prowess of multi-metal compounds, we discuss the increasingly urgent issues in nanotechnology also very generally and guided by the motto 'Bio Is Nature's Nanotech'. Technology belongs to macro-evolution; for example integration with artificial intelligence (AI) is inevitable. Darwinian adaptation manifests as integration of complexity, and awareness of this helps in developing adaptable research methods that can find use across a wide range of research. The second half of this work reviews a diverse range of projects which all benefited from 'playful' programming aimed at dealing with complexity. The main purpose of reviewing them is to show how such projects benefit from and fit in with the general, philosophical approach, proving the relevance of the 'big picture' where it is usually disregarded.