It is demonstrated that the recently introduced semantic intelligence spontaneously maintains bounded logical and quantal error on each and every semantic trajectory, unlike its algorithmic counterpart which is not ab...It is demonstrated that the recently introduced semantic intelligence spontaneously maintains bounded logical and quantal error on each and every semantic trajectory, unlike its algorithmic counterpart which is not able to. This result verifies the conclusion about the assignment of equal evolutionary value to the motion on the set of all the semantic trajectories sharing the same homeostatic pattern. The evolutionary value of permanent and spontaneous maintenance of boundedness of logical and quantal error on each and every semantic trajectory is to make available spontaneous maintenance of the notion of a kind intact in the long run.展开更多
为满足人机系统概率风险评估的需要,提出一种人为差错概率量化方法。分析技能、规则和知识为基础(skill,rule and knowledge-based,SRK)框架和行为模式的确定方法Hanaman决策树法,指出在确定行为模式的过程中考虑行为模式影响因素的不...为满足人机系统概率风险评估的需要,提出一种人为差错概率量化方法。分析技能、规则和知识为基础(skill,rule and knowledge-based,SRK)框架和行为模式的确定方法Hanaman决策树法,指出在确定行为模式的过程中考虑行为模式影响因素的不确定性是必要的;使用模糊逻辑方法处理行为模式各个影响因素的不确定性,根据Hanaman决策树构建模糊推理规则,利用系统人为行为可靠性程序(systematic human action reliability procedure,SHARP)方法所提供的人为差错概率区间确定人为差错概率的隶属度函数。结果表明:该方法考虑了任务场景的不确定性,可以得到人为差错概率的精确值,满足人机系统概率风险评估的需要。展开更多
Residue Number System (RNS) has proved shaping the Digital Signal Processing (DSP) units into highly parallel, faster and secured entities. The computational complexity of the multiplication process for a RNS based de...Residue Number System (RNS) has proved shaping the Digital Signal Processing (DSP) units into highly parallel, faster and secured entities. The computational complexity of the multiplication process for a RNS based design can be reduced by indulging Logarithmic Number System (LNS). The combination of these unusual number systems forms Residue Logarithmic Number System (RLNS) that provides simple internal architectures. Till date RLNS based processing units are designed for binary logic based circuits. In order to reduce the number of input output signals in a system, the concept of Multiple Valued Logic (MVL) is introduced in literature. In that course of research, this paper uses Tri Valued Logic (TVL) in RLNS technique proposed, to further reduce the chip area and delay value. Thus in this research work three different concepts are proposed, it includes the design of multiplier for RLNS based application for number of bits 8, 16 and 32. Next is the utilization of TVL in the proposed multiplication structure for RLNS based system along with the error correction circuits for the ternary logarithmic and antilogarithmic conversion process. Finally the comparison of the two multiplication schemes with the existing research of multiplier design for RNS based system using booth encoding concepts. It can be found that the proposed technique using TVL saves on an average of about 63% of area occupied and 97% of delay value respectively than the existing technique.展开更多
文摘It is demonstrated that the recently introduced semantic intelligence spontaneously maintains bounded logical and quantal error on each and every semantic trajectory, unlike its algorithmic counterpart which is not able to. This result verifies the conclusion about the assignment of equal evolutionary value to the motion on the set of all the semantic trajectories sharing the same homeostatic pattern. The evolutionary value of permanent and spontaneous maintenance of boundedness of logical and quantal error on each and every semantic trajectory is to make available spontaneous maintenance of the notion of a kind intact in the long run.
文摘为满足人机系统概率风险评估的需要,提出一种人为差错概率量化方法。分析技能、规则和知识为基础(skill,rule and knowledge-based,SRK)框架和行为模式的确定方法Hanaman决策树法,指出在确定行为模式的过程中考虑行为模式影响因素的不确定性是必要的;使用模糊逻辑方法处理行为模式各个影响因素的不确定性,根据Hanaman决策树构建模糊推理规则,利用系统人为行为可靠性程序(systematic human action reliability procedure,SHARP)方法所提供的人为差错概率区间确定人为差错概率的隶属度函数。结果表明:该方法考虑了任务场景的不确定性,可以得到人为差错概率的精确值,满足人机系统概率风险评估的需要。
文摘Residue Number System (RNS) has proved shaping the Digital Signal Processing (DSP) units into highly parallel, faster and secured entities. The computational complexity of the multiplication process for a RNS based design can be reduced by indulging Logarithmic Number System (LNS). The combination of these unusual number systems forms Residue Logarithmic Number System (RLNS) that provides simple internal architectures. Till date RLNS based processing units are designed for binary logic based circuits. In order to reduce the number of input output signals in a system, the concept of Multiple Valued Logic (MVL) is introduced in literature. In that course of research, this paper uses Tri Valued Logic (TVL) in RLNS technique proposed, to further reduce the chip area and delay value. Thus in this research work three different concepts are proposed, it includes the design of multiplier for RLNS based application for number of bits 8, 16 and 32. Next is the utilization of TVL in the proposed multiplication structure for RLNS based system along with the error correction circuits for the ternary logarithmic and antilogarithmic conversion process. Finally the comparison of the two multiplication schemes with the existing research of multiplier design for RNS based system using booth encoding concepts. It can be found that the proposed technique using TVL saves on an average of about 63% of area occupied and 97% of delay value respectively than the existing technique.