In case of manufacturing hexahedral ABS (Acrylonitrile Butadiene Styrene) plastic components using a FDM (Fused Deposition Modeling)-based 3D printer, undesirable shape errors occur in the product due to heat shrinkag...In case of manufacturing hexahedral ABS (Acrylonitrile Butadiene Styrene) plastic components using a FDM (Fused Deposition Modeling)-based 3D printer, undesirable shape errors occur in the product due to heat shrinkage. This paper experimentally ob-served the influence of the bed temperature change on the deformed shape errors of a hexahedral specimen of 100 × 50 × 50 mm3 produced by using a 3D printer. During printing work, the head nozzle temperature was kept at 240?C and the head speed was set at 50 mm/s. The chamber was enclosed with a PC-plate. 3D printing was conducted at four different bed temperatures;50?C, 70?C, 90?C, and 110?C. After the produced specimens naturally cooled down to room temperature, their deformed shape errors were measured. As a result, the higher the bed temperature, the lower the deformed shape errors of the specimens were. However, if the bed temperature had exceeded 120?C, laminating adhesion became poor. That seems to occur because of the material phase change and can make 3D printing work very hard as a consequence. Results of this study can be helpful to set optimum bed temperature condition in FDM additive manufacturing.展开更多
The successive approximation register(SAR)is one of the most energy-efficient analog-to-digital converter(ADC)architecture for medium-resolution applications.However,its high energy efficiency quickly diminishes when ...The successive approximation register(SAR)is one of the most energy-efficient analog-to-digital converter(ADC)architecture for medium-resolution applications.However,its high energy efficiency quickly diminishes when the target resolution increases.This is because a SAR ADC suffers from several major error source,including the sampling kT/C noise,the comparator noise,and the DAC mismatch.These errors are increasing hard to address in high-resolution SAR ADCs.This paper reviews recent advances on error suppression techniques for SAR ADCs,including the sampling kT/C noise reduction,the noise-shaping(NS)SAR,and the mismatch error shaping(MES).These techniques aim to boost the resolution of SAR ADCs while maintaining their superior energy efficiency.展开更多
A novel approach for engineering application to human error probability quantification is presented based on an overview of the existing human reliability analysis methods. The set of performance shaping factors is cl...A novel approach for engineering application to human error probability quantification is presented based on an overview of the existing human reliability analysis methods. The set of performance shaping factors is classified as two subsets of dominant factors and adjusting factors respectively. Firstly, the dominant factors are used to determine the probabilities of three behavior modes. The basic probability and its interval of human error for each behavior mode are given. Secondly, the basic probability and its interval are modified by the adjusting factors, and the total probability of human error is calculated by a total probability formula. Finally, a simple example is introduced, and the consistency and validity of the presented approach are illustrated.展开更多
文摘In case of manufacturing hexahedral ABS (Acrylonitrile Butadiene Styrene) plastic components using a FDM (Fused Deposition Modeling)-based 3D printer, undesirable shape errors occur in the product due to heat shrinkage. This paper experimentally ob-served the influence of the bed temperature change on the deformed shape errors of a hexahedral specimen of 100 × 50 × 50 mm3 produced by using a 3D printer. During printing work, the head nozzle temperature was kept at 240?C and the head speed was set at 50 mm/s. The chamber was enclosed with a PC-plate. 3D printing was conducted at four different bed temperatures;50?C, 70?C, 90?C, and 110?C. After the produced specimens naturally cooled down to room temperature, their deformed shape errors were measured. As a result, the higher the bed temperature, the lower the deformed shape errors of the specimens were. However, if the bed temperature had exceeded 120?C, laminating adhesion became poor. That seems to occur because of the material phase change and can make 3D printing work very hard as a consequence. Results of this study can be helpful to set optimum bed temperature condition in FDM additive manufacturing.
基金supported by National Natural Science Foundation of China(No.61904094,No.61934009)China Postdoctoral Science Foundation(No.2020M670329)Beijing Innovation Center for Future Chips(ICFC).
文摘The successive approximation register(SAR)is one of the most energy-efficient analog-to-digital converter(ADC)architecture for medium-resolution applications.However,its high energy efficiency quickly diminishes when the target resolution increases.This is because a SAR ADC suffers from several major error source,including the sampling kT/C noise,the comparator noise,and the DAC mismatch.These errors are increasing hard to address in high-resolution SAR ADCs.This paper reviews recent advances on error suppression techniques for SAR ADCs,including the sampling kT/C noise reduction,the noise-shaping(NS)SAR,and the mismatch error shaping(MES).These techniques aim to boost the resolution of SAR ADCs while maintaining their superior energy efficiency.
文摘A novel approach for engineering application to human error probability quantification is presented based on an overview of the existing human reliability analysis methods. The set of performance shaping factors is classified as two subsets of dominant factors and adjusting factors respectively. Firstly, the dominant factors are used to determine the probabilities of three behavior modes. The basic probability and its interval of human error for each behavior mode are given. Secondly, the basic probability and its interval are modified by the adjusting factors, and the total probability of human error is calculated by a total probability formula. Finally, a simple example is introduced, and the consistency and validity of the presented approach are illustrated.