The curve number and phi(4)-index models each provide a simple one-parameter relationship between storm-event rainfall and runoff. It is shown that the curve number and 4-index models can both be used to segregate the...The curve number and phi(4)-index models each provide a simple one-parameter relationship between storm-event rainfall and runoff. It is shown that the curve number and 4-index models can both be used to segregate the rainfall hyetograph into initial abstraction, retention, and runoff amounts. However, the principal advantages of the 4-index model are that both rainfall distribution and duration can be explicitly taken into account in calculating runoff, and the 4 index is more physically based than the curve number. The quantitative relationship between the curve number and the 4 index is presented and validated with field measurements. Knowing the relationship between the curve number and the 4 index is useful in that it facilitates using the extensive database of curve numbers in the more realistic 4-index model in calculating a runoff hydrograph from a given rainfall hyetograph. It is demonstrated that conventional adjustments to curve numbers can be largely explained by variations in storm duration, which suggests that variable rainfall duration can possibly be an essential factor in accounting for deviations from the median curve number of a catchment.展开更多
Montgomery modular multiplication in the residue number system (RNS) can be applied for elliptic curve cryptography. In this work, unified modular multipliers over generalized Mersenne numbers are proposed for RNS M...Montgomery modular multiplication in the residue number system (RNS) can be applied for elliptic curve cryptography. In this work, unified modular multipliers over generalized Mersenne numbers are proposed for RNS Montgomery modular multiplication, which enables efficient elliptic curve point multiplication (ECPM). Meanwhile, the elliptic curve arithmetic with ECPM is performed by mixed coordinates and adjusted for hardware implementation. In addition, the conversion between RNS and the binary number system is also discussed. Compared with the results in the literature, our hardware architecture for ECPM demonstrates high performance. A 256-bit ECPM in Xilinx XC2VP100 field programmable gate array device (FPGA) can be performed in 1.44 ms, costing 22147 slices, 45 dedicated multipliers, and 8.25K bits of random access memories (RAMs).展开更多
Runoff models such as the Curve Number (CN) model are dependent upon land use and soil type within the watershed or contributing area. In regions with internal drainage (e.g. wetlands) watershed delineation methods th...Runoff models such as the Curve Number (CN) model are dependent upon land use and soil type within the watershed or contributing area. In regions with internal drainage (e.g. wetlands) watershed delineation methods that fill sinks can result in inaccurate contributing areas and estimations of runoff from models such as the CN model. Two methods to account for this inaccuracy have been 1) to adjust the initial abstraction value within the CN model;or 2) to improve the watershed delineation in order to better account for internal drainage. We used a combined approach of examining the watershed delineation, and refining the CN model by the incorporating of dual hydrologic soil classifications. For eighteen watersheds within Wisconsin, we compared the CN model results of three watershed delineation methods to USGS gaged values. We found that for large precipitation events (>100 mm) the CN model estimations are closer to observed values for watershed delineations that identify the directly connected watershed and use the undrained hydrologic soil classification.展开更多
Digital Elevation Models (DEMs) are spatial grids which are used to automate watershed boundary determination. Sinks are present within most DEMs. In order to easily process the watershed boundary, the sinks are reass...Digital Elevation Models (DEMs) are spatial grids which are used to automate watershed boundary determination. Sinks are present within most DEMs. In order to easily process the watershed boundary, the sinks are reassigned to elevation equivalent to an adjacent cell. The derived DEM is called a “filled” DEM. Due to its relative simplicity, the use of the “filled” DEM is one of the most widely used methods to delineate watershed boundaries and works well in about 70 percent of the watersheds in the US. In landscapes with internal drainage, sinks may accurately represent these depressions. In this study, we compare two delineation methods that do not fill in sinks to another method that does fill in sinks. We examined ten gaged watersheds in Wisconsin and Minnesota. We found the spatial extent of the watersheds from the three methods were significantly different. To evaluate the delineation methods, we modeled ten runoff events using the Curve Number (CN) method and compared them to USGS gage discharge for each watershed. For small storms we found that there were no significant differences in the modeled runoff for three delineation methods. For large storms, we found the no-fill methods had a smaller error, but overall the difference was insignificant. This research suggests that capturing internal drainage by the delineation does not have much of an impact on the widely used CN model.展开更多
The proper determination of the curve number (CN) in the SCS-CN method reduces errors in predicting runoff volume. In this paper the variability of CN was studied for 5 Slovak and S Polish Carpathian catchments. Emp...The proper determination of the curve number (CN) in the SCS-CN method reduces errors in predicting runoff volume. In this paper the variability of CN was studied for 5 Slovak and S Polish Carpathian catchments. Empirical curve numbers were applied to the distribution fitting. Next, theoretical characteristics of CN were estimated. For loo-CN the Generalized Extreme Value (GEV) distribution was identified as the best fit in most of the catchments. An assessment of the differences between the characteristics estimated from theoretical distributions and the tabulated values of CN was performed. The comparison between the antecedent runoff conditions (ARC) of Hawkins and Hjelmfelt was also completed. The analysis was done for various magnitudes of rainfall. Confidence intervals (CI) were helpful in this evaluation. The studies revealed discordances between the tabulated and estimated CNs. The tabulated CNs were usually lower than estimated values; therefore, an application of the median value and the probabilistic ARC of Hjelmfelt for wet runoff conditions is advisable. For dry conditions the ARC of Hjelmfelt usually better estimated CN than ARC of Hawkins did, but in several catchments neither the ARC of Hawkins nor Hjelmfelt sufficiently depicted the variability in CN.展开更多
The Soil Conservation Service Curve Number (SCS-CN) is a well-established loss-rate model to estimate runoff. It combines watershed parameters and climatic factors in one entity curve number (CN). The CN exhibits an i...The Soil Conservation Service Curve Number (SCS-CN) is a well-established loss-rate model to estimate runoff. It combines watershed parameters and climatic factors in one entity curve number (CN). The CN exhibits an inherent seasonality beyond its spatial variability, which cannot be accounted for by the conventional methods. In the present study, an attempt has been made to determine the CN for different months of monsoon season with an objective to evaluate the impact of monthly CN on runoff estimation for Ozat catchment (Gujarat State, India). The standard CN and month wise CN were determined by three procedures, viz, the median, geometric mean and standard asymptotic fit using gauged rainfall and runoff. This study shows that the predictive capability of CN determination methods can be improved by using monthly CN. Refined Willmott’s index (dr) and mean absolute error (MAE) were used to assess and validate the performance of each method. The asymptotic fit CN method with monthly CN resulting dr from 0.46 to 0.49 and MAE from 1.13 mm to 1.18 mm was judged to be more consistent with the existing commonly used CN methods in terms of runoff estimation for the study area.展开更多
To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based...To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based on the Soil Conservation Service curve number(SCS-CN) method. Parameters of the model were selected and determined according to the comprehensive analysis of model evaluation indexes. The first simulation of forest reconstruction scenario,namely a coniferous forest covering 59.35km^2 is replaced by a broad-leaved forest showed no significant impact on the flood reduction in the URTR. The second simulation was added with 61.75km^2 bamboo forest replaced by broad-leaved forest,the reduction of flood peak discharge and flood volume could be improved significantly. Specifically,flood peak discharge of 10-year return period event was reduced to 7-year event,and the reduction rate of small flood was 21%-28%. Moreover,the flood volume was reduced by 9%-14% and 18%-35% for moderate floods and small floods,respectively. The resultssuggest that the bamboo forest reconstruction is an effective control solution for small to moderate flood in the URTR,the effect of forest conversion on flood volume is increasingly reduced as the rainfall amount increases to more extreme magnitude. Using a hydrological model with scenarios analysis is an effective simulation approach in investigating the relationship between forest type change and flood control. This method would provide reliable support for flood control and disaster mitigation in mountainous cities.展开更多
We prove the existence and nonexistence of elliptic curves having good reduction everywhere over certain real quadratic fields Q(m) for m≤200. These results of computations give best-possible data including structure...We prove the existence and nonexistence of elliptic curves having good reduction everywhere over certain real quadratic fields Q(m) for m≤200. These results of computations give best-possible data including structures of Mordell-Weil groups over some real quadratic fields via two-descent. We also prove similar results for the case of certain cubic fields. Especially, we give the first example of elliptic curve having everywhere good reduction over a pure cubic field using our method.展开更多
We prove all integral points of the elliptic curve y^2=x^2-30x+133 are (x,y) = (-7,0),(-3,±14),(2, ±9),(6,±13), (5143326,±11664498677), by using the method of algebraic number theory a...We prove all integral points of the elliptic curve y^2=x^2-30x+133 are (x,y) = (-7,0),(-3,±14),(2, ±9),(6,±13), (5143326,±11664498677), by using the method of algebraic number theory and p-adic analysis. Furthermore, we develop a computation method to find all integral points on a class of elliptic curve y^2= (x+α)(x^2-α)(x^2-αx+b) ,α ,b∈Z,α^2〈4b and find all integer solutions of hyperelliptic Diophantine equation Dy^2=Ax^4 + Bx^2 +C,B^2〈4AC.展开更多
The effects of the aspect ratio on unsteady solutions through the curved duct flow are studied numerically by a spectral based computational procedure with a temperature gradient between the vertical sidewalls for the...The effects of the aspect ratio on unsteady solutions through the curved duct flow are studied numerically by a spectral based computational procedure with a temperature gradient between the vertical sidewalls for the Grashof number 100 ≤ Gr ≤ 2 000. The outer wall of the duct is heated while the inner wall is cooled and the top and bottom walls are adiabatic. In this paper, unsteady solutions are calculated by the time history analysis of the Nusselt number for the Dean numbers Dn = 100 and Dn = 500 and the aspect ratios 1≤γ≤ 3. Water is taken as a working fluid (Pr =7.0). It is found that at Dn = 100, there appears a steady-state solution for small or large Gr. For moderate Gr, however, the steady-state solution turns into the periodic solution if γ is increased. For Dn = 500, on the other hand, it is analyzed that the steady-state solution turns into the chaotic solution for small and large Gr for any γ lying in the range. For moderate Gr at Dn = 500, however, the steady-state flow turns into the chaotic flow through the periodic oscillating flow if the aspect ratio is increased.展开更多
In this paper, A method, consisted of perturbation method, Garlerkin method and finite-difference method, is designed to calculate fully developed flows in curved tubes of rectangular cross-section. It costs less comp...In this paper, A method, consisted of perturbation method, Garlerkin method and finite-difference method, is designed to calculate fully developed flows in curved tubes of rectangular cross-section. It costs less computation than that of direct solving N-S equations, and prevents from building high-order difference equations and extra dealing with the boundary conditions. Numerical results in the situation of small curvature and low Dean number is in accordance with former's numerical and experimental results in quality, and it shows the feasibility of this paper's method.展开更多
Combined effects of centrifugal and coriolis instability of the flow through a rotating curved duct with rectangular cross section have been studied numerically by using a spectral method, and covering a wide range of...Combined effects of centrifugal and coriolis instability of the flow through a rotating curved duct with rectangular cross section have been studied numerically by using a spectral method, and covering a wide range of the Taylor number ?for a constant Dean number. The rotation of the duct about the center of curvature is imposed in the positive direction, and the effects of rotation (Coriolis force) on the flow characteristics are investigated. As a result, multiple branches of asymmetric steady solutions with two-, three-and multi-vortex solutions are obtained. To investigate the non-linear behavior of the unsteady solutions, time evolution calculations as well as power spectrum of the unsteady solutions are performed, and it is found that the unsteady flow undergoes through various flow instabilities in the scenario “chaotic?→ multi-periodic?→ periodic?→ steady-state”, if Tr is increased in the positive direction. The present results show the characteristics of both the secondary flow and axial flow distribution in the flow.展开更多
The demand for data security schemes has increased with the significant advancement in the field of computation and communication networks.We propose a novel three-step text encryption scheme that has provable securit...The demand for data security schemes has increased with the significant advancement in the field of computation and communication networks.We propose a novel three-step text encryption scheme that has provable security against computation attacks such as key attack and statistical attack.The proposed scheme is based on the Pell sequence and elliptic curves,where at the first step the plain text is diffused to get a meaningless plain text by applying a cyclic shift on the symbol set.In the second step,we hide the elements of the diffused plain text from the attackers.For this purpose,we use the Pell sequence,a weight function,and a binary sequence to encode each element of the diffused plain text into real numbers.The encoded diffused plain text is then confused by generating permutations over elliptic curves in the third step.We show that the proposed scheme has provable security against key sensitivity attack and statistical attacks.Furthermore,the proposed scheme is secure against key spacing attack,ciphertext only attack,and known-plaintext attack.Compared to some of the existing text encryption schemes,the proposed scheme is highly secure against modern cryptanalysis.展开更多
A SN (structural number) can be calculated for a road pavement from the properties and thicknesses of the surface, basecourse, sub-base and subgrade. Historically, the cost of collecting structural data has been ver...A SN (structural number) can be calculated for a road pavement from the properties and thicknesses of the surface, basecourse, sub-base and subgrade. Historically, the cost of collecting structural data has been very high. Data was initially collected using Benkelman Beams and now by FWD (falling weight deflectometer). The structural strength of pavements weakens over time due to environmental and traffic loading factors but due to a lack of data, no structural deterioration curve for pavements has been implemented in a PMS (pavement management system). IRI (international roughness index) is a measure of the road longitudinal profile and has been used as a proxy for a pavement’s structural integrity. This paper offers two conceptual methods to develop PSDC (pavement structural deterioration curves). Firstly, structural data are grouped in sets by design ESA (equivalent standard axles). An ISN (“initial” SN), SNI (intermediate SN) and a TSN (terminal SN), are used to develop the curves. Using FWD data, the ISN is the SN after the pavement is rehabilitated (Financial Accounting “Modern Equivalent”). Intermediate SNIs, are SNs other than the ISN and TSN. The TSN was defined as the SN of the pavement when it was approved for pavement rehabilitation. The second method is to use TSD (traffic speed deflectometer) data. The road network already divided into road blocks, is grouped by traffic loading. For each traffic loading group, road blocks that have had a recent pavement rehabilitation, are used to calculate the ISN and those planned for pavement rehabilitation to calculate the TSN. The remaining SNs are used to complete the age-based or if available, historical traffic loading-based SNIs.展开更多
The investigation of Thermal performance in nanofluids and hybrid nanofluids over a curved stretching infinite region strengthens its roots in engineering and industry.Therefore,the comparative thermal analysis in SiO...The investigation of Thermal performance in nanofluids and hybrid nanofluids over a curved stretching infinite region strengthens its roots in engineering and industry.Therefore,the comparative thermal analysis in SiO_(2)–H_(2)O and(MoS_(2)–SiO_(2))–H_(2)O is conducted over curved stretching surface.The model is reduced in the dimensional version via similarity transformation and then treated numerically.The velocity and thermal behavior for both the fluids is decorated against the preeminent parameters.From the analysis,it is examined that the motion of under consideration fluids declines against Fr and.The thermal performance enhances for higher volumetric fraction and.Further,it is noticed that thermal performance prevailed in(MoS_(2)–SiO_(2))–H_(2)O throughout the analysis.Therefore,(MoS_(2)–SiO_(2))–H_(2)O is better for industrial and engineering uses where high heat transfer is required to accomplished different processes of production.展开更多
径流曲线数模型(Soil Conservation Service Curve Number Model,简称SCS-CN模型)可以利用降雨资料估算径流,对水资源合理配置和山洪灾害预警具有重要意义,因为其方便计算、参数简单,而被广泛应用。目前标准SCS-CN模型在山区小流域的适...径流曲线数模型(Soil Conservation Service Curve Number Model,简称SCS-CN模型)可以利用降雨资料估算径流,对水资源合理配置和山洪灾害预警具有重要意义,因为其方便计算、参数简单,而被广泛应用。目前标准SCS-CN模型在山区小流域的适用性欠佳,因此需要对模型参数进行优化以提高预测精度。本文以湖南省螺岭桥流域为例,根据实测降雨径流资料优化径流曲线数CN(Curve Number)查算表,并利用步长优化参数算法研究初损率对模型精度的影响,将优化模型的方法应用于湖南省凤凰小流域,验证该优化方法的可靠性。结果分析表明:与标准SCS-CN模型相比,优化后的SCS-CN模型效率系数NSE从0.576提升至0.813,决定系数R^(2)为0.858。将模型优化方法验证于气候地形条件相似的凤凰流域,模型NSE值提高117%。通过预测径流深与实测径流深比较,优化模型模拟精度较为理想,对湖南省山区小流域场次降雨产流预报有一定的参考意义。展开更多
文摘The curve number and phi(4)-index models each provide a simple one-parameter relationship between storm-event rainfall and runoff. It is shown that the curve number and 4-index models can both be used to segregate the rainfall hyetograph into initial abstraction, retention, and runoff amounts. However, the principal advantages of the 4-index model are that both rainfall distribution and duration can be explicitly taken into account in calculating runoff, and the 4 index is more physically based than the curve number. The quantitative relationship between the curve number and the 4 index is presented and validated with field measurements. Knowing the relationship between the curve number and the 4 index is useful in that it facilitates using the extensive database of curve numbers in the more realistic 4-index model in calculating a runoff hydrograph from a given rainfall hyetograph. It is demonstrated that conventional adjustments to curve numbers can be largely explained by variations in storm duration, which suggests that variable rainfall duration can possibly be an essential factor in accounting for deviations from the median curve number of a catchment.
基金supported by the National Natural Science Foundation of China under Grant No. 61073173
文摘Montgomery modular multiplication in the residue number system (RNS) can be applied for elliptic curve cryptography. In this work, unified modular multipliers over generalized Mersenne numbers are proposed for RNS Montgomery modular multiplication, which enables efficient elliptic curve point multiplication (ECPM). Meanwhile, the elliptic curve arithmetic with ECPM is performed by mixed coordinates and adjusted for hardware implementation. In addition, the conversion between RNS and the binary number system is also discussed. Compared with the results in the literature, our hardware architecture for ECPM demonstrates high performance. A 256-bit ECPM in Xilinx XC2VP100 field programmable gate array device (FPGA) can be performed in 1.44 ms, costing 22147 slices, 45 dedicated multipliers, and 8.25K bits of random access memories (RAMs).
文摘Runoff models such as the Curve Number (CN) model are dependent upon land use and soil type within the watershed or contributing area. In regions with internal drainage (e.g. wetlands) watershed delineation methods that fill sinks can result in inaccurate contributing areas and estimations of runoff from models such as the CN model. Two methods to account for this inaccuracy have been 1) to adjust the initial abstraction value within the CN model;or 2) to improve the watershed delineation in order to better account for internal drainage. We used a combined approach of examining the watershed delineation, and refining the CN model by the incorporating of dual hydrologic soil classifications. For eighteen watersheds within Wisconsin, we compared the CN model results of three watershed delineation methods to USGS gaged values. We found that for large precipitation events (>100 mm) the CN model estimations are closer to observed values for watershed delineations that identify the directly connected watershed and use the undrained hydrologic soil classification.
文摘Digital Elevation Models (DEMs) are spatial grids which are used to automate watershed boundary determination. Sinks are present within most DEMs. In order to easily process the watershed boundary, the sinks are reassigned to elevation equivalent to an adjacent cell. The derived DEM is called a “filled” DEM. Due to its relative simplicity, the use of the “filled” DEM is one of the most widely used methods to delineate watershed boundaries and works well in about 70 percent of the watersheds in the US. In landscapes with internal drainage, sinks may accurately represent these depressions. In this study, we compare two delineation methods that do not fill in sinks to another method that does fill in sinks. We examined ten gaged watersheds in Wisconsin and Minnesota. We found the spatial extent of the watersheds from the three methods were significantly different. To evaluate the delineation methods, we modeled ten runoff events using the Curve Number (CN) method and compared them to USGS gage discharge for each watershed. For small storms we found that there were no significant differences in the modeled runoff for three delineation methods. For large storms, we found the no-fill methods had a smaller error, but overall the difference was insignificant. This research suggests that capturing internal drainage by the delineation does not have much of an impact on the widely used CN model.
基金supported by the Slovak Grant Agency VEGA under Project No.1/0776/13 and Project No.1/0710/15Research Project No.N N305 396238 founded by the Polish Ministry of Science and Higher Education
文摘The proper determination of the curve number (CN) in the SCS-CN method reduces errors in predicting runoff volume. In this paper the variability of CN was studied for 5 Slovak and S Polish Carpathian catchments. Empirical curve numbers were applied to the distribution fitting. Next, theoretical characteristics of CN were estimated. For loo-CN the Generalized Extreme Value (GEV) distribution was identified as the best fit in most of the catchments. An assessment of the differences between the characteristics estimated from theoretical distributions and the tabulated values of CN was performed. The comparison between the antecedent runoff conditions (ARC) of Hawkins and Hjelmfelt was also completed. The analysis was done for various magnitudes of rainfall. Confidence intervals (CI) were helpful in this evaluation. The studies revealed discordances between the tabulated and estimated CNs. The tabulated CNs were usually lower than estimated values; therefore, an application of the median value and the probabilistic ARC of Hjelmfelt for wet runoff conditions is advisable. For dry conditions the ARC of Hjelmfelt usually better estimated CN than ARC of Hawkins did, but in several catchments neither the ARC of Hawkins nor Hjelmfelt sufficiently depicted the variability in CN.
文摘The Soil Conservation Service Curve Number (SCS-CN) is a well-established loss-rate model to estimate runoff. It combines watershed parameters and climatic factors in one entity curve number (CN). The CN exhibits an inherent seasonality beyond its spatial variability, which cannot be accounted for by the conventional methods. In the present study, an attempt has been made to determine the CN for different months of monsoon season with an objective to evaluate the impact of monthly CN on runoff estimation for Ozat catchment (Gujarat State, India). The standard CN and month wise CN were determined by three procedures, viz, the median, geometric mean and standard asymptotic fit using gauged rainfall and runoff. This study shows that the predictive capability of CN determination methods can be improved by using monthly CN. Refined Willmott’s index (dr) and mean absolute error (MAE) were used to assess and validate the performance of each method. The asymptotic fit CN method with monthly CN resulting dr from 0.46 to 0.49 and MAE from 1.13 mm to 1.18 mm was judged to be more consistent with the existing commonly used CN methods in terms of runoff estimation for the study area.
基金funded by the National Natural Science Foundation of China (Grants No.51278239)
文摘To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based on the Soil Conservation Service curve number(SCS-CN) method. Parameters of the model were selected and determined according to the comprehensive analysis of model evaluation indexes. The first simulation of forest reconstruction scenario,namely a coniferous forest covering 59.35km^2 is replaced by a broad-leaved forest showed no significant impact on the flood reduction in the URTR. The second simulation was added with 61.75km^2 bamboo forest replaced by broad-leaved forest,the reduction of flood peak discharge and flood volume could be improved significantly. Specifically,flood peak discharge of 10-year return period event was reduced to 7-year event,and the reduction rate of small flood was 21%-28%. Moreover,the flood volume was reduced by 9%-14% and 18%-35% for moderate floods and small floods,respectively. The resultssuggest that the bamboo forest reconstruction is an effective control solution for small to moderate flood in the URTR,the effect of forest conversion on flood volume is increasingly reduced as the rainfall amount increases to more extreme magnitude. Using a hydrological model with scenarios analysis is an effective simulation approach in investigating the relationship between forest type change and flood control. This method would provide reliable support for flood control and disaster mitigation in mountainous cities.
文摘We prove the existence and nonexistence of elliptic curves having good reduction everywhere over certain real quadratic fields Q(m) for m≤200. These results of computations give best-possible data including structures of Mordell-Weil groups over some real quadratic fields via two-descent. We also prove similar results for the case of certain cubic fields. Especially, we give the first example of elliptic curve having everywhere good reduction over a pure cubic field using our method.
基金Supported by the National Natural Science Foun-dation of China (2001AA141010)
文摘We prove all integral points of the elliptic curve y^2=x^2-30x+133 are (x,y) = (-7,0),(-3,±14),(2, ±9),(6,±13), (5143326,±11664498677), by using the method of algebraic number theory and p-adic analysis. Furthermore, we develop a computation method to find all integral points on a class of elliptic curve y^2= (x+α)(x^2-α)(x^2-αx+b) ,α ,b∈Z,α^2〈4b and find all integer solutions of hyperelliptic Diophantine equation Dy^2=Ax^4 + Bx^2 +C,B^2〈4AC.
文摘The effects of the aspect ratio on unsteady solutions through the curved duct flow are studied numerically by a spectral based computational procedure with a temperature gradient between the vertical sidewalls for the Grashof number 100 ≤ Gr ≤ 2 000. The outer wall of the duct is heated while the inner wall is cooled and the top and bottom walls are adiabatic. In this paper, unsteady solutions are calculated by the time history analysis of the Nusselt number for the Dean numbers Dn = 100 and Dn = 500 and the aspect ratios 1≤γ≤ 3. Water is taken as a working fluid (Pr =7.0). It is found that at Dn = 100, there appears a steady-state solution for small or large Gr. For moderate Gr, however, the steady-state solution turns into the periodic solution if γ is increased. For Dn = 500, on the other hand, it is analyzed that the steady-state solution turns into the chaotic solution for small and large Gr for any γ lying in the range. For moderate Gr at Dn = 500, however, the steady-state flow turns into the chaotic flow through the periodic oscillating flow if the aspect ratio is increased.
文摘In this paper, A method, consisted of perturbation method, Garlerkin method and finite-difference method, is designed to calculate fully developed flows in curved tubes of rectangular cross-section. It costs less computation than that of direct solving N-S equations, and prevents from building high-order difference equations and extra dealing with the boundary conditions. Numerical results in the situation of small curvature and low Dean number is in accordance with former's numerical and experimental results in quality, and it shows the feasibility of this paper's method.
文摘Combined effects of centrifugal and coriolis instability of the flow through a rotating curved duct with rectangular cross section have been studied numerically by using a spectral method, and covering a wide range of the Taylor number ?for a constant Dean number. The rotation of the duct about the center of curvature is imposed in the positive direction, and the effects of rotation (Coriolis force) on the flow characteristics are investigated. As a result, multiple branches of asymmetric steady solutions with two-, three-and multi-vortex solutions are obtained. To investigate the non-linear behavior of the unsteady solutions, time evolution calculations as well as power spectrum of the unsteady solutions are performed, and it is found that the unsteady flow undergoes through various flow instabilities in the scenario “chaotic?→ multi-periodic?→ periodic?→ steady-state”, if Tr is increased in the positive direction. The present results show the characteristics of both the secondary flow and axial flow distribution in the flow.
基金This research is funded through JSPS KAKENHI Grant Number 18J23484,QAU-URF 2015HEC project NRPU-7433.
文摘The demand for data security schemes has increased with the significant advancement in the field of computation and communication networks.We propose a novel three-step text encryption scheme that has provable security against computation attacks such as key attack and statistical attack.The proposed scheme is based on the Pell sequence and elliptic curves,where at the first step the plain text is diffused to get a meaningless plain text by applying a cyclic shift on the symbol set.In the second step,we hide the elements of the diffused plain text from the attackers.For this purpose,we use the Pell sequence,a weight function,and a binary sequence to encode each element of the diffused plain text into real numbers.The encoded diffused plain text is then confused by generating permutations over elliptic curves in the third step.We show that the proposed scheme has provable security against key sensitivity attack and statistical attacks.Furthermore,the proposed scheme is secure against key spacing attack,ciphertext only attack,and known-plaintext attack.Compared to some of the existing text encryption schemes,the proposed scheme is highly secure against modern cryptanalysis.
文摘A SN (structural number) can be calculated for a road pavement from the properties and thicknesses of the surface, basecourse, sub-base and subgrade. Historically, the cost of collecting structural data has been very high. Data was initially collected using Benkelman Beams and now by FWD (falling weight deflectometer). The structural strength of pavements weakens over time due to environmental and traffic loading factors but due to a lack of data, no structural deterioration curve for pavements has been implemented in a PMS (pavement management system). IRI (international roughness index) is a measure of the road longitudinal profile and has been used as a proxy for a pavement’s structural integrity. This paper offers two conceptual methods to develop PSDC (pavement structural deterioration curves). Firstly, structural data are grouped in sets by design ESA (equivalent standard axles). An ISN (“initial” SN), SNI (intermediate SN) and a TSN (terminal SN), are used to develop the curves. Using FWD data, the ISN is the SN after the pavement is rehabilitated (Financial Accounting “Modern Equivalent”). Intermediate SNIs, are SNs other than the ISN and TSN. The TSN was defined as the SN of the pavement when it was approved for pavement rehabilitation. The second method is to use TSD (traffic speed deflectometer) data. The road network already divided into road blocks, is grouped by traffic loading. For each traffic loading group, road blocks that have had a recent pavement rehabilitation, are used to calculate the ISN and those planned for pavement rehabilitation to calculate the TSN. The remaining SNs are used to complete the age-based or if available, historical traffic loading-based SNIs.
文摘The investigation of Thermal performance in nanofluids and hybrid nanofluids over a curved stretching infinite region strengthens its roots in engineering and industry.Therefore,the comparative thermal analysis in SiO_(2)–H_(2)O and(MoS_(2)–SiO_(2))–H_(2)O is conducted over curved stretching surface.The model is reduced in the dimensional version via similarity transformation and then treated numerically.The velocity and thermal behavior for both the fluids is decorated against the preeminent parameters.From the analysis,it is examined that the motion of under consideration fluids declines against Fr and.The thermal performance enhances for higher volumetric fraction and.Further,it is noticed that thermal performance prevailed in(MoS_(2)–SiO_(2))–H_(2)O throughout the analysis.Therefore,(MoS_(2)–SiO_(2))–H_(2)O is better for industrial and engineering uses where high heat transfer is required to accomplished different processes of production.
文摘径流曲线数模型(Soil Conservation Service Curve Number Model,简称SCS-CN模型)可以利用降雨资料估算径流,对水资源合理配置和山洪灾害预警具有重要意义,因为其方便计算、参数简单,而被广泛应用。目前标准SCS-CN模型在山区小流域的适用性欠佳,因此需要对模型参数进行优化以提高预测精度。本文以湖南省螺岭桥流域为例,根据实测降雨径流资料优化径流曲线数CN(Curve Number)查算表,并利用步长优化参数算法研究初损率对模型精度的影响,将优化模型的方法应用于湖南省凤凰小流域,验证该优化方法的可靠性。结果分析表明:与标准SCS-CN模型相比,优化后的SCS-CN模型效率系数NSE从0.576提升至0.813,决定系数R^(2)为0.858。将模型优化方法验证于气候地形条件相似的凤凰流域,模型NSE值提高117%。通过预测径流深与实测径流深比较,优化模型模拟精度较为理想,对湖南省山区小流域场次降雨产流预报有一定的参考意义。