Aiming at the assembly accuracy of a large aircraft transport jig, the effect of component error and the error of work-piece surface on the work-piece position and orientation in the 3-2-1 fixturing scheme is studied ...Aiming at the assembly accuracy of a large aircraft transport jig, the effect of component error and the error of work-piece surface on the work-piece position and orientation in the 3-2-1 fixturing scheme is studied with the object pose space description method. The error mapping model between the connecting part of the front frame rack and its support base is modeled using the homogeneous transformation matrix(HTM) method. The probabilistic error is simulated using the Monte Carlo method. The measurement experiment was conducted by the laser tracker to verify the effectiveness of the approach, and the approach has been successfully applied to the production of transport jig.展开更多
Error model is the basis for accuracy-related computations and analyses for parallel kinematic machines(PKMs).Traditional error modeling methods are usually based on differentiation of kinematic solutions,but the so...Error model is the basis for accuracy-related computations and analyses for parallel kinematic machines(PKMs).Traditional error modeling methods are usually based on differentiation of kinematic solutions,but the solving process is often complex and has limitations for certain specialized PKMs.A concise numerical error modeling method with the inverse kinematic solution as its only requirement is presented in this paper.To avoid complex Jacobian matrix computations,the difference matrix that can be quickly calculated by kinematic solutions was used to replace the differential matrix.The quasi-Newton method,which has high speed and high precision,was introduced to solve the numerical forward kinematic problem.To verify the efficiency of this numerical error modeling method,three applications in error transformation matrix(ETM) modeling,error analysis,and kinematic calibration were simulated on a 4RRR PKM.A comparison with the results obtained by the traditional method shows that the numerical method is accurate,convenient,and has lower requirements and wider applicability,especially for certain specialized and manufactured PKMs.展开更多
基金Supported by National Key Technology Research and Development Program of China(No.2012BAF01B07)
文摘Aiming at the assembly accuracy of a large aircraft transport jig, the effect of component error and the error of work-piece surface on the work-piece position and orientation in the 3-2-1 fixturing scheme is studied with the object pose space description method. The error mapping model between the connecting part of the front frame rack and its support base is modeled using the homogeneous transformation matrix(HTM) method. The probabilistic error is simulated using the Monte Carlo method. The measurement experiment was conducted by the laser tracker to verify the effectiveness of the approach, and the approach has been successfully applied to the production of transport jig.
基金Supported by the National Natural Science Foundation of China(Nos 50775117 and 50775125)the National High-Tech Researchand Development (863) Program of China (No 2007AA041901)+1 种基金the National Key Technology Research and Development Program(No 2006BAF01B09)the Technology Innovation Fund ofAVIC (No 2009E13224)
文摘Error model is the basis for accuracy-related computations and analyses for parallel kinematic machines(PKMs).Traditional error modeling methods are usually based on differentiation of kinematic solutions,but the solving process is often complex and has limitations for certain specialized PKMs.A concise numerical error modeling method with the inverse kinematic solution as its only requirement is presented in this paper.To avoid complex Jacobian matrix computations,the difference matrix that can be quickly calculated by kinematic solutions was used to replace the differential matrix.The quasi-Newton method,which has high speed and high precision,was introduced to solve the numerical forward kinematic problem.To verify the efficiency of this numerical error modeling method,three applications in error transformation matrix(ETM) modeling,error analysis,and kinematic calibration were simulated on a 4RRR PKM.A comparison with the results obtained by the traditional method shows that the numerical method is accurate,convenient,and has lower requirements and wider applicability,especially for certain specialized and manufactured PKMs.