The oxidative esterification of methacrolein(MAL)is an important way to prepare high-valued methyl methacrylate(MMA),but this process is ultra-complex due to the high reactivity of both C=O and C=C bonds in MAL molecu...The oxidative esterification of methacrolein(MAL)is an important way to prepare high-valued methyl methacrylate(MMA),but this process is ultra-complex due to the high reactivity of both C=O and C=C bonds in MAL molecule.In order to further improve MMA selectivity,the reaction network and relevant mechanisms have been proposed and profoundly investigated in this paper.Five kinds of fundamental reactions are involved in this process,including(a)the acetal reaction;(b)the aerobic oxidation of hemiacetal;(c)the alkoxylation of C=C double bond;(d)the Diels-Alder reaction;and(e)the hydrogenation reaction of unsaturated double bond.Among them,the Diels-Alder reaction of MAL is non-catalyzed,and the Brönsted acid sites or the Lewis acid sites favor promoting acetal reaction of MAL with methanol,while the alkoxylation of C=C bond with methanol is enhanced under alkaline condition.In particular,by employing the Pd-based catalysts,hydrogenation products are formed in alkaline methanol solution,hence with lower than those obtained by the Au-based catalysts.Notably,it is necessary to match the hemiacetal fromation and aerobic oxidation of hemiacetal,which is relevant with the amount and strength of acid and redox sites.Consequently,this work can provide a good guidance for the further design of both catalysts and processes in future.展开更多
This work explores the possibility of plasma acid as acid catalyst in organic reactions. Plasma acidic water was prepared by dielectric barrier discharge and used to catalyze esterification of n-heptanioc acid with et...This work explores the possibility of plasma acid as acid catalyst in organic reactions. Plasma acidic water was prepared by dielectric barrier discharge and used to catalyze esterification of n-heptanioc acid with ethanol. It is found that the plasma acidic water has a stable and better performance than sulfuric acid, meaning that it is an excellent acid catalyst. The plasma acidic water would be a promising alternative for classic mineral acid as a more environment friendly acid.展开更多
In the field of adiabatic correction for complex reactions,a simple one-stage kinetic model was used to estimate the real reaction kinetics.However,this assumption simplified the real process,inevitably generated inac...In the field of adiabatic correction for complex reactions,a simple one-stage kinetic model was used to estimate the real reaction kinetics.However,this assumption simplified the real process,inevitably generated inaccurate or even unsafe results.Therefore,it was necessary to find a new correction method for complex reactions.In this work,esterification of acetic anhydride by methanol was chosen as an object reaction of study.The reaction was studied under different conditions by Reaction Calorimeter(RC1).Then,Thermal Safety Software(TSS)was used to establish the kinetic model and estimate the parameters,where,activation energies for three stages were67.09,81.02,73.77 kJ?mol^(-1)respectively,and corresponding frequency factors in logarithmic form were 16.05,19.59,15.72 s^(-1).In addition,two adiabatic tests were performed by Vent Sizing Package2(VSP2).For accurate correction of VSP2 tests,a new correction method based on Enhanced Fisher method was proposed.Combined with kinetics,adiabatic correction of esterification reaction was achieved.Through this research,accurate kinetic parameters for a three-step kinetic model of the esterification reaction were acquired.Furthermore,the correlation coefficients between simulated curves and corrected curves were 0.976 and 0.968,which proved the accuracy of proposed new adiabatic correction method.Based on this new method,conservative corrected results were able to be acquired and be applied in safety assessment.展开更多
The fermentation for succinic acid production outperforms other methods by low energy consumption and environmental benignity,with the resulting products mainly as disodium succinate(DSA).By directly esterifying DSA u...The fermentation for succinic acid production outperforms other methods by low energy consumption and environmental benignity,with the resulting products mainly as disodium succinate(DSA).By directly esterifying DSA using CO_(2) and CH3OH,it is expected to avoid the use of inorganic acids.By high-resolution mass spectrometry analysis and theoretical calculation,this study establishes that the reaction consists of three steps,i.e.,first forming 3-carboxypropanoate,then monomethyl succinate(MMS),and finally dimethyl succinate(DMS).A detailed kinetic analysis is further performed,the results demonstrate that the transformation of DSA to MMS is regarded to be a second-order reaction for reactant DSA,while the transformation of MMS to DMS is a first-order reaction for reactant MMS.The activation energy for the generation of MMS from DSA is 37.15 kJ·mol^(-1),and that for the generation of DMS from MMS is 85.80 kJ·mol^(-1),indicating the latter one is the rate-determining step.展开更多
In this paper, non-catalytic high temperature deacidification process of glycerol rich in acid oil was studied. Through orthogonal experiment, the primary and secondary order of influencing factors was temperature, gl...In this paper, non-catalytic high temperature deacidification process of glycerol rich in acid oil was studied. Through orthogonal experiment, the primary and secondary order of influencing factors was temperature, glycerol dosage and reaction time, and the optimal process conditions were further verified: The ratio of fatty acid to glycerol is 1:1.2, the reaction temperature is 240<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C, and the acid value can be reduced to 1.66 mg<span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span><span><span><span><span style="font-family:;" "="">KOH/g for 2 h. In addition, the activation energy of the reaction was 54.93 kJ/mol by kinetic study. Combined with the <i>K</i><sub>1</sub> value of each reaction, it was confirmed that the temperature rise was conducive to the progress of the reaction.</span></span></span></span></span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span><span><span><span><span style="font-family:;" "="">Finally, the high temperature ionization theory of glycerol is put forward, and the mechanism of auto-catalyzed deacidification reaction of glycerol is deduced by using this theory.</span></span></span></span></span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span><span><span><span><span style="font-family:;" "="">This theory not only explains this study, but also perfectly explains the slow reaction time of low glycerol dosage.</span></span></span></span></span>展开更多
Nitrogen-rich zeolitic imidazolate frameworks(ZIFs)are ideal precursors for the synthesis of metal single atoms anchored on N-doped carbon.However,the microporous structures of conventional ZIFs lead to low mass trans...Nitrogen-rich zeolitic imidazolate frameworks(ZIFs)are ideal precursors for the synthesis of metal single atoms anchored on N-doped carbon.However,the microporous structures of conventional ZIFs lead to low mass transfer efficiency and low metal utilization of their derivatives.Here,we construct a composite of Co single atoms anchored on nitrogen-doped carbon with a three-dimensional ordered macroporous structure(Co-SA/3DOM-NC)by two-step pyrolysis of ordered macro/microporous ZnCo-ZIF.Co-SA/3DOM-NC shows high activity in the oxidative esterification of furfural,achieving a 99%yield of methyl 2-furoate under mild reaction conditions,which is significantly superior to the microporous and the Conanoparticle counterparts.The high activity of Co-SA/3DOM-NC should be attributed to the CoN4 centers with high intrinsic activity and the ordered macroporous structure,promoting the mass transfer of reactants and accessibility of active sites.展开更多
A direct three-component approach has been developed for the synthesis of a-cyano acrylates starting from al- dehydes, alcohols and a-cyano acetamide by employing cyanuric chloride as an organocatalyst. A class of str...A direct three-component approach has been developed for the synthesis of a-cyano acrylates starting from al- dehydes, alcohols and a-cyano acetamide by employing cyanuric chloride as an organocatalyst. A class of structur- ally diverse a-cyano acrylates have been provided with good to excellent yields via the cascade transformation of Knoevenagel condensation and amide esterification.展开更多
The kinetics of simultaneous transesterification and esterification with a carbon-based solid acid catalyst was studied.Two solid acid catalysts were prepared by the sulfonation of carbonized vegetable oil asphalt and...The kinetics of simultaneous transesterification and esterification with a carbon-based solid acid catalyst was studied.Two solid acid catalysts were prepared by the sulfonation of carbonized vegetable oil asphalt and petroleum asphalt.These catalysts were characterized on the basis of elemental analysis,acidity site concentration,the Brunauer-Emmett-Teller(BET)surface area and pore size.The kinetic parameters with the two catalysts were determined,and the reaction system can be described as a pseudo homogeneous catalyzed reaction.All the forward and reverse reactions follow second order kinetics.The calculated concentration values from the kinetic equations are in good agreement with experimental values.展开更多
Several imidazolium ionic liquid(IL)-supported sulfonic acids with different anions,[C_3SO_3Hmim]HSO_4,[C_3SO_3Hmim]BF_4, [C_3SO_3 Hmim]PF_6,and[C_3SO_3Hmim]CF_3SO_3,were synthesized and applied as catalysts for est...Several imidazolium ionic liquid(IL)-supported sulfonic acids with different anions,[C_3SO_3Hmim]HSO_4,[C_3SO_3Hmim]BF_4, [C_3SO_3 Hmim]PF_6,and[C_3SO_3Hmim]CF_3SO_3,were synthesized and applied as catalysts for esterification reaction of benzoic acid. The experimental results indicate that imidazolium IL-supported sulfonic acid containing anion of HSO_4^- shows the best catalytic activity.Only when less[C_3SO_3Hmim]HSO_4(0.3 equiv.) applied,was the product obtained with high yield of 97%.Furthermore, the produced esters could be separated by decantation,and the catalyst could be reused after the removal of water.展开更多
基金The authors acknowledge supports from the National Key Basic Research Development Plan“973”Project(2006CB202508)the SINOPEC Project(411058,413025)the National Natural Science Foundation(21808244).
文摘The oxidative esterification of methacrolein(MAL)is an important way to prepare high-valued methyl methacrylate(MMA),but this process is ultra-complex due to the high reactivity of both C=O and C=C bonds in MAL molecule.In order to further improve MMA selectivity,the reaction network and relevant mechanisms have been proposed and profoundly investigated in this paper.Five kinds of fundamental reactions are involved in this process,including(a)the acetal reaction;(b)the aerobic oxidation of hemiacetal;(c)the alkoxylation of C=C double bond;(d)the Diels-Alder reaction;and(e)the hydrogenation reaction of unsaturated double bond.Among them,the Diels-Alder reaction of MAL is non-catalyzed,and the Brönsted acid sites or the Lewis acid sites favor promoting acetal reaction of MAL with methanol,while the alkoxylation of C=C bond with methanol is enhanced under alkaline condition.In particular,by employing the Pd-based catalysts,hydrogenation products are formed in alkaline methanol solution,hence with lower than those obtained by the Au-based catalysts.Notably,it is necessary to match the hemiacetal fromation and aerobic oxidation of hemiacetal,which is relevant with the amount and strength of acid and redox sites.Consequently,this work can provide a good guidance for the further design of both catalysts and processes in future.
文摘This work explores the possibility of plasma acid as acid catalyst in organic reactions. Plasma acidic water was prepared by dielectric barrier discharge and used to catalyze esterification of n-heptanioc acid with ethanol. It is found that the plasma acidic water has a stable and better performance than sulfuric acid, meaning that it is an excellent acid catalyst. The plasma acidic water would be a promising alternative for classic mineral acid as a more environment friendly acid.
文摘In the field of adiabatic correction for complex reactions,a simple one-stage kinetic model was used to estimate the real reaction kinetics.However,this assumption simplified the real process,inevitably generated inaccurate or even unsafe results.Therefore,it was necessary to find a new correction method for complex reactions.In this work,esterification of acetic anhydride by methanol was chosen as an object reaction of study.The reaction was studied under different conditions by Reaction Calorimeter(RC1).Then,Thermal Safety Software(TSS)was used to establish the kinetic model and estimate the parameters,where,activation energies for three stages were67.09,81.02,73.77 kJ?mol^(-1)respectively,and corresponding frequency factors in logarithmic form were 16.05,19.59,15.72 s^(-1).In addition,two adiabatic tests were performed by Vent Sizing Package2(VSP2).For accurate correction of VSP2 tests,a new correction method based on Enhanced Fisher method was proposed.Combined with kinetics,adiabatic correction of esterification reaction was achieved.Through this research,accurate kinetic parameters for a three-step kinetic model of the esterification reaction were acquired.Furthermore,the correlation coefficients between simulated curves and corrected curves were 0.976 and 0.968,which proved the accuracy of proposed new adiabatic correction method.Based on this new method,conservative corrected results were able to be acquired and be applied in safety assessment.
基金Natural Science Foundation of Shanxi Province(202203021221069 and 202103021223063)National Natural Science Foundation of China(21706172).
文摘The fermentation for succinic acid production outperforms other methods by low energy consumption and environmental benignity,with the resulting products mainly as disodium succinate(DSA).By directly esterifying DSA using CO_(2) and CH3OH,it is expected to avoid the use of inorganic acids.By high-resolution mass spectrometry analysis and theoretical calculation,this study establishes that the reaction consists of three steps,i.e.,first forming 3-carboxypropanoate,then monomethyl succinate(MMS),and finally dimethyl succinate(DMS).A detailed kinetic analysis is further performed,the results demonstrate that the transformation of DSA to MMS is regarded to be a second-order reaction for reactant DSA,while the transformation of MMS to DMS is a first-order reaction for reactant MMS.The activation energy for the generation of MMS from DSA is 37.15 kJ·mol^(-1),and that for the generation of DMS from MMS is 85.80 kJ·mol^(-1),indicating the latter one is the rate-determining step.
文摘In this paper, non-catalytic high temperature deacidification process of glycerol rich in acid oil was studied. Through orthogonal experiment, the primary and secondary order of influencing factors was temperature, glycerol dosage and reaction time, and the optimal process conditions were further verified: The ratio of fatty acid to glycerol is 1:1.2, the reaction temperature is 240<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C, and the acid value can be reduced to 1.66 mg<span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span><span><span><span><span style="font-family:;" "="">KOH/g for 2 h. In addition, the activation energy of the reaction was 54.93 kJ/mol by kinetic study. Combined with the <i>K</i><sub>1</sub> value of each reaction, it was confirmed that the temperature rise was conducive to the progress of the reaction.</span></span></span></span></span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span><span><span><span><span style="font-family:;" "="">Finally, the high temperature ionization theory of glycerol is put forward, and the mechanism of auto-catalyzed deacidification reaction of glycerol is deduced by using this theory.</span></span></span></span></span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span><span><span><span><span style="font-family:;" "="">This theory not only explains this study, but also perfectly explains the slow reaction time of low glycerol dosage.</span></span></span></span></span>
基金supported by the National Natural Science Foundation of China(No.21825802,22138003,and 22108083)the Fundamental Research Funds for the Central Universities(No.2022ZYGXZR017 and 2022ZYGXZR108)+5 种基金the Foundation of Advanced Catalytic Engineering Research Center of the Ministry of Education(No.2020AC006)the State Key Laboratory of Pulp and Paper Engineering(No.2022C04 and 2022ZD05)the Guangdong Pearl River Talents Program(No.2021ZT09Z109 and 2021QN02C8)the Natural Science Foundation of Guangdong Province(No.2017A030312005 and 2022A1515012575)the Guangdong Basic and Applied Basic Research Foundation(No.2021A1515110413)the Science and Technology Program of Guangzhou(No.202201010118)。
文摘Nitrogen-rich zeolitic imidazolate frameworks(ZIFs)are ideal precursors for the synthesis of metal single atoms anchored on N-doped carbon.However,the microporous structures of conventional ZIFs lead to low mass transfer efficiency and low metal utilization of their derivatives.Here,we construct a composite of Co single atoms anchored on nitrogen-doped carbon with a three-dimensional ordered macroporous structure(Co-SA/3DOM-NC)by two-step pyrolysis of ordered macro/microporous ZnCo-ZIF.Co-SA/3DOM-NC shows high activity in the oxidative esterification of furfural,achieving a 99%yield of methyl 2-furoate under mild reaction conditions,which is significantly superior to the microporous and the Conanoparticle counterparts.The high activity of Co-SA/3DOM-NC should be attributed to the CoN4 centers with high intrinsic activity and the ordered macroporous structure,promoting the mass transfer of reactants and accessibility of active sites.
文摘A direct three-component approach has been developed for the synthesis of a-cyano acrylates starting from al- dehydes, alcohols and a-cyano acetamide by employing cyanuric chloride as an organocatalyst. A class of structur- ally diverse a-cyano acrylates have been provided with good to excellent yields via the cascade transformation of Knoevenagel condensation and amide esterification.
文摘The kinetics of simultaneous transesterification and esterification with a carbon-based solid acid catalyst was studied.Two solid acid catalysts were prepared by the sulfonation of carbonized vegetable oil asphalt and petroleum asphalt.These catalysts were characterized on the basis of elemental analysis,acidity site concentration,the Brunauer-Emmett-Teller(BET)surface area and pore size.The kinetic parameters with the two catalysts were determined,and the reaction system can be described as a pseudo homogeneous catalyzed reaction.All the forward and reverse reactions follow second order kinetics.The calculated concentration values from the kinetic equations are in good agreement with experimental values.
基金the National Natural Science Foundation of China(No.20676033)China Postdoctoral Science Foundation(No.20070410169)Shanghai Leading Academic Discipline Project(No.B507) for financial support
文摘Several imidazolium ionic liquid(IL)-supported sulfonic acids with different anions,[C_3SO_3Hmim]HSO_4,[C_3SO_3Hmim]BF_4, [C_3SO_3 Hmim]PF_6,and[C_3SO_3Hmim]CF_3SO_3,were synthesized and applied as catalysts for esterification reaction of benzoic acid. The experimental results indicate that imidazolium IL-supported sulfonic acid containing anion of HSO_4^- shows the best catalytic activity.Only when less[C_3SO_3Hmim]HSO_4(0.3 equiv.) applied,was the product obtained with high yield of 97%.Furthermore, the produced esters could be separated by decantation,and the catalyst could be reused after the removal of water.