In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated...In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets.展开更多
Control performance monitoring has attracted great attention in both academia and industry over the past two decades. However, most research efforts have been devoted to the performance monitoring of linear control sy...Control performance monitoring has attracted great attention in both academia and industry over the past two decades. However, most research efforts have been devoted to the performance monitoring of linear control systems, without considering the pervasive nonlinearities(e.g. valve stiction) present in most industrial control systems. In this work, a novel probability distribution distance based index is proposed to monitor the performance of non-linear control systems. The proposed method uses Hellinger distance to evaluate change of control system performance. Several simulation examples are given to illustrate the effectiveness of the proposed method.展开更多
This paper proposes an event-triggered active disturbance rejection control framework to achieve the simultaneous position and attitude control of a satellite in proximity operations.Firstly,to facilitate the satellit...This paper proposes an event-triggered active disturbance rejection control framework to achieve the simultaneous position and attitude control of a satellite in proximity operations.Firstly,to facilitate the satellite motion description,we derive the relative kinematics and dynamics in terms of dual quaternions with the considerations of internal uncertainties and external disturbances.Then,two kinds of event-triggered mechanisms in the sensor/observer and controller/actuator channels are proposed to reduce the utilization of onboard communication resources and to improve control performance,respectively.The observation error and tracking error of both the attitude and orbit systems are theoretically proven to be asymptotically bounded.Finally,the simulation results show that the proposed method can achieve simultaneous position and attitude tracking between target and chaser satellites with satisfactory control performance and reduced communication rates.展开更多
In this paper,a sliding mode control with perturbation estimation(SMCPE) coupled with an inverse hysteresis compensator is proposed for the motion tracking control of a microposition system with piezoelectric actuatio...In this paper,a sliding mode control with perturbation estimation(SMCPE) coupled with an inverse hysteresis compensator is proposed for the motion tracking control of a microposition system with piezoelectric actuation.The inverse hysteresis compensator is employed to cancel the hysteresis nonlinearity,thus reducing the nonlinear system to a linear system with an inversion error.Then,a SMCPE controller is adopted to deal with all the unmodeled dynamics and disturbances,aiming at improving the dynamic performance and the robustness of system.An experiment of a piezoelectric actuator is presented to demonstrate the feasibility and effectiveness of the proposed control scheme.The result shows that for a fast-rate control input,the proposed method is capable of leading to a good performance of system behavior.展开更多
This paper focuses on the issues of the security of networked control systems by summarizing recent progress in secure control of this research and application area. We mainly discuss existing results, especially in m...This paper focuses on the issues of the security of networked control systems by summarizing recent progress in secure control of this research and application area. We mainly discuss existing results, especially in modeling issues, of three aspects: (1) attack mechanisms and their impacts on control systems, (2) the identification and design of attacks, and (3) secure estimation and control strategies. A conclusion is drawn at the end of this paper. In addition, several promising research tendencies of the development for secure control in networked control system are presented.展开更多
In recent years, theoretical and practical research on event-based communication strategies has gained considerable research attention due primarily to their irreplaceable superiority in resource-constrained systems(...In recent years, theoretical and practical research on event-based communication strategies has gained considerable research attention due primarily to their irreplaceable superiority in resource-constrained systems(especially networked systems). For networked systems, event-based transmission scheme is capable of improving the efficiency in resource utilization and prolonging the lifetime of the network components compared with the widely adopted periodic transmission scheme. As such, it would be interesting to 1) examining how the event-triggering mechanisms affect the control or filtering performance for networked systems, and 2) developing some suitable approaches for the controller and filter design problems. In this paper, a bibliographical review is presented on event-based control and filtering problems for various networked systems. First, the event-driven communication scheme is introduced in detail according to its engineering background, characteristic, and representative research frameworks. Then, different event-based control and filtering(or state estimation) problems are categorized and then discussed. Finally, we conclude the paper by outlining future research challenges for event-based networked systems.展开更多
Load simulator is a key test equipment for aircraft actuation systems in hardware-in-the-loop-simulation. Static loading is an essential function of the load simulator and widely used in the static/dynamic stiffness t...Load simulator is a key test equipment for aircraft actuation systems in hardware-in-the-loop-simulation. Static loading is an essential function of the load simulator and widely used in the static/dynamic stiffness test of aircraft actuation systems. The tracking performance of the static loading is studied in this paper. Firstly, the nonlinear mathematical models of the hydraulic load simulator are derived, and the feedback linearization method is employed to construct a feed-forward controller to improve the force tracking performance. Considering the effect of the friction, a LuGre model based friction compensation is synthesized, in which the unmeasurable state is estimated by a dual state observer via a controlled learning mechanism to guarantee that the estimation is bounded. The modeling errors are attenuated by a well-designed robust controller with a control accuracy measured by a design parameter. Employing the dual state observer is to capture the different effects of the unmeasured state and hence can improve the friction compensation accuracy. The tracking performance is summarized by a derived theorem. Experimental results are also obtained to verify the high performance nature of the proposed control strategy.展开更多
This paper investigates the finite element approximation of a class of parameter estimation problems which is the form of performance as the optimal control problems governed by bilinear parabolic equations,where the ...This paper investigates the finite element approximation of a class of parameter estimation problems which is the form of performance as the optimal control problems governed by bilinear parabolic equations,where the state and co-state are discretized by piecewise linear functions and control is approximated by piecewise constant functions.The authors derive some a priori error estimates for both the control and state approximations.Finally,the numerical experiments verify the theoretical results.展开更多
The problem of air-fuel ratio(AFR) control of the port injection spark ignition(SI) engine is still of considerable importance because of stringent demands on emission control. In this paper, the static AFR calculatio...The problem of air-fuel ratio(AFR) control of the port injection spark ignition(SI) engine is still of considerable importance because of stringent demands on emission control. In this paper, the static AFR calculation model based on in-cylinder pressure data and on the adaptive AFR control strategy is presented. The model utilises the intake manifold pressure, engine speed, total heat release, and the rapid burn angle, as input variables for the AFR computation. The combustion parameters, total heat release,and rapid burn angle, are calculated from in-cylinder pressure data. This proposed AFR model can be applied to the virtual lambda sensor for the feedback control system. In practical applications, simple adaptive control(SAC) is applied in conjunction with the AFR model for port-injected fuel control. The experimental results show that the proposed model can estimate the AFR, and the accuracy of the estimated value is applicable to the feedback control system. Additionally, the adaptive controller with the AFR model can be applied to regulate the AFR of the port injection SI engine.展开更多
Cyber-physical systems (CPSs) are integrations of computation, communication, control and physical processes. Typical examples where CPSs are deployed include smart grids, civil infrastructure, medical devices and m...Cyber-physical systems (CPSs) are integrations of computation, communication, control and physical processes. Typical examples where CPSs are deployed include smart grids, civil infrastructure, medical devices and manufacturing. Security is one of the most important issues that should be investigated in CPSs and hence has received much attention in recent years. This paper surveys recent results in this area and mainly focusses on three important categories: attack detection, attack design and secure estimation and control. We also discuss several future research directions including risk assessment, modeling of attacks and attacks design, counter-attack strategy and testbed and validation.展开更多
文摘In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets.
基金Supported by the National Natural Science Foundation of China(61134007,61203157)the National Science Fund for Outstanding Young Scholars(61222303)+1 种基金the Fundamental Research Funds for the Central Universities(22A20151405)Shanghai R&D Platform Construction Program(13DZ2295300)
文摘Control performance monitoring has attracted great attention in both academia and industry over the past two decades. However, most research efforts have been devoted to the performance monitoring of linear control systems, without considering the pervasive nonlinearities(e.g. valve stiction) present in most industrial control systems. In this work, a novel probability distribution distance based index is proposed to monitor the performance of non-linear control systems. The proposed method uses Hellinger distance to evaluate change of control system performance. Several simulation examples are given to illustrate the effectiveness of the proposed method.
文摘This paper proposes an event-triggered active disturbance rejection control framework to achieve the simultaneous position and attitude control of a satellite in proximity operations.Firstly,to facilitate the satellite motion description,we derive the relative kinematics and dynamics in terms of dual quaternions with the considerations of internal uncertainties and external disturbances.Then,two kinds of event-triggered mechanisms in the sensor/observer and controller/actuator channels are proposed to reduce the utilization of onboard communication resources and to improve control performance,respectively.The observation error and tracking error of both the attitude and orbit systems are theoretically proven to be asymptotically bounded.Finally,the simulation results show that the proposed method can achieve simultaneous position and attitude tracking between target and chaser satellites with satisfactory control performance and reduced communication rates.
基金supported by National Science Foundation of China under Grant No.61304097Foundation for Innovative Research Groups of the National Natural Science Foundation of China under Grant No.61321002Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT1208
文摘In this paper,a sliding mode control with perturbation estimation(SMCPE) coupled with an inverse hysteresis compensator is proposed for the motion tracking control of a microposition system with piezoelectric actuation.The inverse hysteresis compensator is employed to cancel the hysteresis nonlinearity,thus reducing the nonlinear system to a linear system with an inversion error.Then,a SMCPE controller is adopted to deal with all the unmodeled dynamics and disturbances,aiming at improving the dynamic performance and the robustness of system.An experiment of a piezoelectric actuator is presented to demonstrate the feasibility and effectiveness of the proposed control scheme.The result shows that for a fast-rate control input,the proposed method is capable of leading to a good performance of system behavior.
基金This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 61673255, 61263003 and 61273114) the International Corporation Project of Shanghai Science and Technology Commission (Grant No. 14510722500)+2 种基金 the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning the Key Project of Science and Technology Commission of Shanghai Municipality (Grant No. 10JC1405000) A Project of Shandong Province Higher Educational Science and Technology Program (Grant No. J17KA084).
文摘This paper focuses on the issues of the security of networked control systems by summarizing recent progress in secure control of this research and application area. We mainly discuss existing results, especially in modeling issues, of three aspects: (1) attack mechanisms and their impacts on control systems, (2) the identification and design of attacks, and (3) secure estimation and control strategies. A conclusion is drawn at the end of this paper. In addition, several promising research tendencies of the development for secure control in networked control system are presented.
基金supported by National Natural Science Foundation of China(No.61329301)the Royal Society of the UK+2 种基金the Research Fund for the Taishan Scholar Project of Shandong Province of Chinathe China Postdoctoral Science Foundation(No.2016M600547)the Alexander von Humboldt Foundation of Germany
文摘In recent years, theoretical and practical research on event-based communication strategies has gained considerable research attention due primarily to their irreplaceable superiority in resource-constrained systems(especially networked systems). For networked systems, event-based transmission scheme is capable of improving the efficiency in resource utilization and prolonging the lifetime of the network components compared with the widely adopted periodic transmission scheme. As such, it would be interesting to 1) examining how the event-triggering mechanisms affect the control or filtering performance for networked systems, and 2) developing some suitable approaches for the controller and filter design problems. In this paper, a bibliographical review is presented on event-based control and filtering problems for various networked systems. First, the event-driven communication scheme is introduced in detail according to its engineering background, characteristic, and representative research frameworks. Then, different event-based control and filtering(or state estimation) problems are categorized and then discussed. Finally, we conclude the paper by outlining future research challenges for event-based networked systems.
基金National Science Fund for Distinguished Young Scholars (50825502)
文摘Load simulator is a key test equipment for aircraft actuation systems in hardware-in-the-loop-simulation. Static loading is an essential function of the load simulator and widely used in the static/dynamic stiffness test of aircraft actuation systems. The tracking performance of the static loading is studied in this paper. Firstly, the nonlinear mathematical models of the hydraulic load simulator are derived, and the feedback linearization method is employed to construct a feed-forward controller to improve the force tracking performance. Considering the effect of the friction, a LuGre model based friction compensation is synthesized, in which the unmeasurable state is estimated by a dual state observer via a controlled learning mechanism to guarantee that the estimation is bounded. The modeling errors are attenuated by a well-designed robust controller with a control accuracy measured by a design parameter. Employing the dual state observer is to capture the different effects of the unmeasured state and hence can improve the friction compensation accuracy. The tracking performance is summarized by a derived theorem. Experimental results are also obtained to verify the high performance nature of the proposed control strategy.
基金supported by the National Natural Science Foundation of China under Grant Nos.11101025,11071080,11171113the National Natural Science Foundation of China under Grant No.11126279+1 种基金the Fundamental Research Funds for the Central Universitiesthe Youth Foundation of Tianyuan Mathematics
文摘This paper investigates the finite element approximation of a class of parameter estimation problems which is the form of performance as the optimal control problems governed by bilinear parabolic equations,where the state and co-state are discretized by piecewise linear functions and control is approximated by piecewise constant functions.The authors derive some a priori error estimates for both the control and state approximations.Finally,the numerical experiments verify the theoretical results.
文摘The problem of air-fuel ratio(AFR) control of the port injection spark ignition(SI) engine is still of considerable importance because of stringent demands on emission control. In this paper, the static AFR calculation model based on in-cylinder pressure data and on the adaptive AFR control strategy is presented. The model utilises the intake manifold pressure, engine speed, total heat release, and the rapid burn angle, as input variables for the AFR computation. The combustion parameters, total heat release,and rapid burn angle, are calculated from in-cylinder pressure data. This proposed AFR model can be applied to the virtual lambda sensor for the feedback control system. In practical applications, simple adaptive control(SAC) is applied in conjunction with the AFR model for port-injected fuel control. The experimental results show that the proposed model can estimate the AFR, and the accuracy of the estimated value is applicable to the feedback control system. Additionally, the adaptive controller with the AFR model can be applied to regulate the AFR of the port injection SI engine.
基金This work was supported in part by the Natural Science Foundation of China (Nos. 61321002, 61120106010, 61522303, U1509215), the Program for New Century Excellent Talents in University (No. NCET-13-0045), and the Beijing Higher Education Young Elite Teacher Project.
文摘Cyber-physical systems (CPSs) are integrations of computation, communication, control and physical processes. Typical examples where CPSs are deployed include smart grids, civil infrastructure, medical devices and manufacturing. Security is one of the most important issues that should be investigated in CPSs and hence has received much attention in recent years. This paper surveys recent results in this area and mainly focusses on three important categories: attack detection, attack design and secure estimation and control. We also discuss several future research directions including risk assessment, modeling of attacks and attacks design, counter-attack strategy and testbed and validation.