Estimation of Signal Parameters via Rotational Invariance Technique(ESPRIT) algorithm can estimate Direction-Of-Arrival(DOA) of coherent signal,but its performance can not reach full satisfaction.We reconstruct the re...Estimation of Signal Parameters via Rotational Invariance Technique(ESPRIT) algorithm can estimate Direction-Of-Arrival(DOA) of coherent signal,but its performance can not reach full satisfaction.We reconstruct the received signal to form data model with multi-invariance property,and multi-invariance ESPRIT algorithm for coherent DOA estimation is proposed in this paper.The proposed algorithm can resolve the DOAs of coherent signals and performs better in DOA estimation than that of ESPRIT-like algorithm.Meanwhile,it identifies more DOAs than ESPRIT-like algorithm.The simulation results demonstrate its validity.展开更多
A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in mult...A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in multistage Wiener filter(MSWF),the orthogonal residual vectors obtained in conjugate gradient(CG) method span the signal subspace used by ESPRIT.The computational complexity of the proposed method is significantly reduced,since the signal subspace estimation mainly needs two matrixvector complex multiplications at the iteration of data level.Furthermore,the prior training data are not needed in the proposed method.To overcome performance degradation at low signal to noise ratio(SNR),the expanded signal subspace spanned by more basis vectors is used and simultaneously renders ESPRIT yield redundant DOAs,which can be excluded by performing ESPRIT once more using the unexpanded signal subspace.Compared with the traditional ESPRIT methods by MSWF and eigenvalue decomposition(EVD),numerical results demonstrate the satisfactory performance of the proposed method.展开更多
The non-Gaussian α-stable distribution is introduced to model impulsive noise. Based on the theory of fractional lower order statistics (FLOS), the fractional lower order cross-covariance (FLOCC) sequence for two rec...The non-Gaussian α-stable distribution is introduced to model impulsive noise. Based on the theory of fractional lower order statistics (FLOS), the fractional lower order cross-covariance (FLOCC) sequence for two received signals is obtained and the fractional lower order cross-covariance spectrum (FLOCCS) can be approached by taking a Fourier transform for the FLOCC sequence. When the FLOCCS is treated as a sequence in the time domain, the problem of multipath time delay estimation (TDE) may be converted into one on multi-frequencies estimation or directions of arrival estimation. Accordingly, the high resolution multipath TDE can be realized with the ESPRIT technology. This idea on multipath TDE is referred to as FLOCCS-ESPRIT in this paper. Computer simulations show that this method has good performance both in a Gaussian noise and in an impulsive noise environment.展开更多
提出一种基于旋转不变信号参数估计技术ESPRIT(Estimation of signal parameters via rotational invariance technique)、模式搜索算法PSA(Pattern search algorithm)与轻型梯度提升机LightGBM(Light gradient boosting machine)结合...提出一种基于旋转不变信号参数估计技术ESPRIT(Estimation of signal parameters via rotational invariance technique)、模式搜索算法PSA(Pattern search algorithm)与轻型梯度提升机LightGBM(Light gradient boosting machine)结合的感应电动机转子断条数目诊断新方法。模拟了转子断条故障下的瞬时无功功率信号并用其衡量ESPRIT-PSA的性能。结果表明:ESPRIT-PSA只需短时数据就能准确测量瞬时无功功率信号中的转子断条故障特征分量。随后,为解决现有的电机瞬时无功功率信号分析MIRPSA(Motor instantaneous reactive power signal analysis)类方法无法准确诊断转子断条数目的问题,引入LightGBM对转子断条故障进行多分类以准确诊断转子断条数目。最后针对一台异步电动机进行转子断条诊断实验,结果表明:该方法是有效的,并且因将瞬时无功功率作为分析信号而适用于电机低转差率的情况。展开更多
A 2D-direction of arrival estimation (DOAE) for multi input and multi-output (MIMO) radar using improved multiple temporal-spatial subspaces in estimating signal parameters via rotational invariance techniques method ...A 2D-direction of arrival estimation (DOAE) for multi input and multi-output (MIMO) radar using improved multiple temporal-spatial subspaces in estimating signal parameters via rotational invariance techniques method (TS-ESPRIT) is introduced. In order to realize the improved TS-ESPRIT, the proposed algorithm divides the planar array into multiple uniform sub-planar arrays with common reference point to get a unified phase shifts measurement point for all sub-arrays. The TS-ESPRIT is applied to each sub-array separately, and in the same time with the others to realize the parallelly temporal and spatial processing, so that it reduces the non-linearity effect of model and decreases the computational time. Then, the time difference of arrival (TDOA) technique is applied to combine the multiple sub-arrays in order to form the improved TS-ESPRIT. It is found that the proposed method achieves high accuracy at a low signal to noise ratio (SNR) with low computational complexity, leading to enhancement of the estimators performance.展开更多
为了提高分布式阵列在低信噪比(signal-to-noise ratio,SNR)条件下的波达方向(direction-of-arrival,DOA)估计性能,同时放宽阵列物理孔径扩展程度的限制,提出了一种基于旋转不变子空间(estimation of signal parameters via rotational ...为了提高分布式阵列在低信噪比(signal-to-noise ratio,SNR)条件下的波达方向(direction-of-arrival,DOA)估计性能,同时放宽阵列物理孔径扩展程度的限制,提出了一种基于旋转不变子空间(estimation of signal parameters via rotational invariance techniques,ESPRIT)的多基线分布式阵列DOA估计方法。该方法通过优化分布式阵列结构,在子阵间使用多基线结构布阵,结合ESPRIT算法和多步解模糊方法得到多基线分布式阵列的高精度无模糊DOA估计。此外,利用最大后验概率准则近似法分析分布式阵列DOA估计的门限效应,给出了SNR门限和基线长度门限的近似计算方法。计算机仿真结果验证了所提方法的有效性。展开更多
电力负荷具有一定的周期相似性,为此,提出一种基于子空间旋转矢量不变技术(E S P R I T)的综合负荷预测方法。对电力负荷数据进行移位平移处理构造出满足子空间不变性的数据矩阵,利用最小二乘法E S P R I T原理进行谐波检测,提取出各主...电力负荷具有一定的周期相似性,为此,提出一种基于子空间旋转矢量不变技术(E S P R I T)的综合负荷预测方法。对电力负荷数据进行移位平移处理构造出满足子空间不变性的数据矩阵,利用最小二乘法E S P R I T原理进行谐波检测,提取出各主要频率分量成分。利用K均值聚类法把提取的分量根据频率特点分为不同类型,之后建立不同预测模型对各部分进行独立负荷预测,最终得到综合的预测负荷值。E S P R I T算法具有较高的频谱分辨率,可降低原数据维数,且综合预测法能针对不同成分有更好的预测。最后仿真也证明了该方法预测的准确性及有效性。展开更多
对于电能质量扰动检测和定位中振荡瞬态的检测、识别,目前普遍采用的是时频特征矢量提取和智能模式识别方法,此类方法无法准确提取电能质量振荡瞬态信号不同频率分量的组成。结合模极大值小波域和总体最小二乘法旋转不变技术的信号参数...对于电能质量扰动检测和定位中振荡瞬态的检测、识别,目前普遍采用的是时频特征矢量提取和智能模式识别方法,此类方法无法准确提取电能质量振荡瞬态信号不同频率分量的组成。结合模极大值小波域和总体最小二乘法旋转不变技术的信号参数估计(total least squares-estimation of signal parameters via rotational invariancete chniques,TLS-ESPRIT)可以很好地实现振荡信号的检测与识别。对于输入信号,首先采用模极大值小波域检测振荡发生的起始时刻和终止时刻,然后利用振荡时间间隔内的信号建立观测空间矩阵,通过奇异值分解和总体最小二乘法实现特征值截尾,将采样信号观测空间分解为信号子空间和噪声子空间,得到振荡信号每个构成频率分量的相应参数。仿真结果证实了所提出方法的可行性。展开更多
提出了一种基于奇异值分解(Singular Value Decomposition,SVD)滤波和快速四阶累积量(Speedy Fourth-Order Cumulants,SFOC)旋转不变信号参数估计技术(Estimation of Signal Parameters via Rotational Invariance Technique,ESPRIT)的...提出了一种基于奇异值分解(Singular Value Decomposition,SVD)滤波和快速四阶累积量(Speedy Fourth-Order Cumulants,SFOC)旋转不变信号参数估计技术(Estimation of Signal Parameters via Rotational Invariance Technique,ESPRIT)的异步电动机转子断条故障检测方法。SVD滤波方法可以理想地滤除电机定子电流信号的基频分量与背景噪声,从而凸显转子断条故障特征频率分量;四阶累积量ESPRIT方法可以有效减少噪声干扰、扩展信号阵元并以高频率分辨力提取定子电流信号中的转子断条故障特征频率分量;特别是,将二者结合即可在短时采样信号条件下以高频率分辨力提取转子断条故障特征频率分量。为了改善四阶累积量ESPRIT方法的快速性,提出了精简算法以消除均匀线阵的DOA(direction ofarrival)估计中的大量冗余数据,从而大幅减小计算量。转子断条故障检测实验表明:基于SVD和SFOC-ESPRIT的异步电动机转子断条故障检测方法效果良好。展开更多
为了提高旋转不变子空间(estimation of signal parameters via rotational invariance techniques,ESPRIT)算法的分辨力和测角精度,充分利用非零延迟相关函数中信号入射角度的信息,提出了基于延时相关处理的ESPRIT算法。根据所有阵列...为了提高旋转不变子空间(estimation of signal parameters via rotational invariance techniques,ESPRIT)算法的分辨力和测角精度,充分利用非零延迟相关函数中信号入射角度的信息,提出了基于延时相关处理的ESPRIT算法。根据所有阵列间延时相关信息,构造新的阵列输出矩阵,并且得到新的协方差矩阵。对新的协方差矩阵进行特征值分解得到特征向量,通过将特征向量划分得到含有入射角度信息的子阵,最终求得信源的入射角度。仿真结果表明,该算法的分辨力和测角精度均优于原ESPRIT算法,并且在小角度间距情况下也有较好的分辨性能。展开更多
基金Supported by the National Natural Science Foundation of China (No.60801052)Aeronautical Science Foundation of China (No.2008ZC52026,2009ZC52036)
文摘Estimation of Signal Parameters via Rotational Invariance Technique(ESPRIT) algorithm can estimate Direction-Of-Arrival(DOA) of coherent signal,but its performance can not reach full satisfaction.We reconstruct the received signal to form data model with multi-invariance property,and multi-invariance ESPRIT algorithm for coherent DOA estimation is proposed in this paper.The proposed algorithm can resolve the DOAs of coherent signals and performs better in DOA estimation than that of ESPRIT-like algorithm.Meanwhile,it identifies more DOAs than ESPRIT-like algorithm.The simulation results demonstrate its validity.
文摘A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in multistage Wiener filter(MSWF),the orthogonal residual vectors obtained in conjugate gradient(CG) method span the signal subspace used by ESPRIT.The computational complexity of the proposed method is significantly reduced,since the signal subspace estimation mainly needs two matrixvector complex multiplications at the iteration of data level.Furthermore,the prior training data are not needed in the proposed method.To overcome performance degradation at low signal to noise ratio(SNR),the expanded signal subspace spanned by more basis vectors is used and simultaneously renders ESPRIT yield redundant DOAs,which can be excluded by performing ESPRIT once more using the unexpanded signal subspace.Compared with the traditional ESPRIT methods by MSWF and eigenvalue decomposition(EVD),numerical results demonstrate the satisfactory performance of the proposed method.
基金Projects 60372081, 30170259 and 30570475 supported by the National Natural Science Foundation of China, VSN-2005-01 the Opened Foundation of National Key-Lab of Vibration, Impact and Noise, 80523+1 种基金the Science Foundation of Hainan Province and Hj200501 the Foundation of Education Department of Hainan Province
文摘The non-Gaussian α-stable distribution is introduced to model impulsive noise. Based on the theory of fractional lower order statistics (FLOS), the fractional lower order cross-covariance (FLOCC) sequence for two received signals is obtained and the fractional lower order cross-covariance spectrum (FLOCCS) can be approached by taking a Fourier transform for the FLOCC sequence. When the FLOCCS is treated as a sequence in the time domain, the problem of multipath time delay estimation (TDE) may be converted into one on multi-frequencies estimation or directions of arrival estimation. Accordingly, the high resolution multipath TDE can be realized with the ESPRIT technology. This idea on multipath TDE is referred to as FLOCCS-ESPRIT in this paper. Computer simulations show that this method has good performance both in a Gaussian noise and in an impulsive noise environment.
文摘提出一种基于旋转不变信号参数估计技术ESPRIT(Estimation of signal parameters via rotational invariance technique)、模式搜索算法PSA(Pattern search algorithm)与轻型梯度提升机LightGBM(Light gradient boosting machine)结合的感应电动机转子断条数目诊断新方法。模拟了转子断条故障下的瞬时无功功率信号并用其衡量ESPRIT-PSA的性能。结果表明:ESPRIT-PSA只需短时数据就能准确测量瞬时无功功率信号中的转子断条故障特征分量。随后,为解决现有的电机瞬时无功功率信号分析MIRPSA(Motor instantaneous reactive power signal analysis)类方法无法准确诊断转子断条数目的问题,引入LightGBM对转子断条故障进行多分类以准确诊断转子断条数目。最后针对一台异步电动机进行转子断条诊断实验,结果表明:该方法是有效的,并且因将瞬时无功功率作为分析信号而适用于电机低转差率的情况。
基金supported by the National Natural Science Foundation of China(61301211)and the Aviation Science Foundation(20131852028)
文摘A 2D-direction of arrival estimation (DOAE) for multi input and multi-output (MIMO) radar using improved multiple temporal-spatial subspaces in estimating signal parameters via rotational invariance techniques method (TS-ESPRIT) is introduced. In order to realize the improved TS-ESPRIT, the proposed algorithm divides the planar array into multiple uniform sub-planar arrays with common reference point to get a unified phase shifts measurement point for all sub-arrays. The TS-ESPRIT is applied to each sub-array separately, and in the same time with the others to realize the parallelly temporal and spatial processing, so that it reduces the non-linearity effect of model and decreases the computational time. Then, the time difference of arrival (TDOA) technique is applied to combine the multiple sub-arrays in order to form the improved TS-ESPRIT. It is found that the proposed method achieves high accuracy at a low signal to noise ratio (SNR) with low computational complexity, leading to enhancement of the estimators performance.
文摘由于共形天线阵列流形的多极化特性(polarization diversity,PD),信源方位参数与极化状态的"耦合"是实现共形阵列天线波达方向(direction-of-arrival,DOA)估计的主要难点。针对柱面共形阵列天线的特点,建立了柱面共形阵列天线的导向矢量模型;通过合理的阵元排列结构设计,结合ESPRIT(esti mation of signalparameters via rotational invariance techniques)算法参数估计的特点,实现了信源极化状态与方位参数的去耦合,推导了ESPRIT算法多参数估计的参数配对方法,最终提出了柱面共形阵列天线盲极化DOA估计算法。计算机Monte Carlo仿真实验验证了所提算法的有效性。
文摘为了提高分布式阵列在低信噪比(signal-to-noise ratio,SNR)条件下的波达方向(direction-of-arrival,DOA)估计性能,同时放宽阵列物理孔径扩展程度的限制,提出了一种基于旋转不变子空间(estimation of signal parameters via rotational invariance techniques,ESPRIT)的多基线分布式阵列DOA估计方法。该方法通过优化分布式阵列结构,在子阵间使用多基线结构布阵,结合ESPRIT算法和多步解模糊方法得到多基线分布式阵列的高精度无模糊DOA估计。此外,利用最大后验概率准则近似法分析分布式阵列DOA估计的门限效应,给出了SNR门限和基线长度门限的近似计算方法。计算机仿真结果验证了所提方法的有效性。
文摘电力负荷具有一定的周期相似性,为此,提出一种基于子空间旋转矢量不变技术(E S P R I T)的综合负荷预测方法。对电力负荷数据进行移位平移处理构造出满足子空间不变性的数据矩阵,利用最小二乘法E S P R I T原理进行谐波检测,提取出各主要频率分量成分。利用K均值聚类法把提取的分量根据频率特点分为不同类型,之后建立不同预测模型对各部分进行独立负荷预测,最终得到综合的预测负荷值。E S P R I T算法具有较高的频谱分辨率,可降低原数据维数,且综合预测法能针对不同成分有更好的预测。最后仿真也证明了该方法预测的准确性及有效性。
文摘对于电能质量扰动检测和定位中振荡瞬态的检测、识别,目前普遍采用的是时频特征矢量提取和智能模式识别方法,此类方法无法准确提取电能质量振荡瞬态信号不同频率分量的组成。结合模极大值小波域和总体最小二乘法旋转不变技术的信号参数估计(total least squares-estimation of signal parameters via rotational invariancete chniques,TLS-ESPRIT)可以很好地实现振荡信号的检测与识别。对于输入信号,首先采用模极大值小波域检测振荡发生的起始时刻和终止时刻,然后利用振荡时间间隔内的信号建立观测空间矩阵,通过奇异值分解和总体最小二乘法实现特征值截尾,将采样信号观测空间分解为信号子空间和噪声子空间,得到振荡信号每个构成频率分量的相应参数。仿真结果证实了所提出方法的可行性。
文摘提出了一种基于奇异值分解(Singular Value Decomposition,SVD)滤波和快速四阶累积量(Speedy Fourth-Order Cumulants,SFOC)旋转不变信号参数估计技术(Estimation of Signal Parameters via Rotational Invariance Technique,ESPRIT)的异步电动机转子断条故障检测方法。SVD滤波方法可以理想地滤除电机定子电流信号的基频分量与背景噪声,从而凸显转子断条故障特征频率分量;四阶累积量ESPRIT方法可以有效减少噪声干扰、扩展信号阵元并以高频率分辨力提取定子电流信号中的转子断条故障特征频率分量;特别是,将二者结合即可在短时采样信号条件下以高频率分辨力提取转子断条故障特征频率分量。为了改善四阶累积量ESPRIT方法的快速性,提出了精简算法以消除均匀线阵的DOA(direction ofarrival)估计中的大量冗余数据,从而大幅减小计算量。转子断条故障检测实验表明:基于SVD和SFOC-ESPRIT的异步电动机转子断条故障检测方法效果良好。
文摘为了提高旋转不变子空间(estimation of signal parameters via rotational invariance techniques,ESPRIT)算法的分辨力和测角精度,充分利用非零延迟相关函数中信号入射角度的信息,提出了基于延时相关处理的ESPRIT算法。根据所有阵列间延时相关信息,构造新的阵列输出矩阵,并且得到新的协方差矩阵。对新的协方差矩阵进行特征值分解得到特征向量,通过将特征向量划分得到含有入射角度信息的子阵,最终求得信源的入射角度。仿真结果表明,该算法的分辨力和测角精度均优于原ESPRIT算法,并且在小角度间距情况下也有较好的分辨性能。